검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2013.08 KCI 등재 서비스 종료(열람 제한)
        This paper describes a flexible visuo-haptic display module. We have developed a flexible electro-active polymer (EAP) actuator and a thin flexible visual display with 3×3 array configuration via polymer technology. The flexible actuator consists of nine EAP cells vertically moving in response to change in their thickness. The flexible display uses polymer based optical waveguide allowing light to scatter only at specific area. The display film is transparent and identically designed to the array pattern to fit for the arrangement of actuator cells. A pressure sensor is installed under the integrated module. The performance of the actuator is proved to be sufficient for satisfying perceivable range of human touch sense. The integrated system can provide interactive haptic feedback such as key pressing, contact vibration sensations, and etc. in accordance with user input.
        2.
        2013.08 KCI 등재 서비스 종료(열람 제한)
        Vibrotactile actuators for small consumer electronic products, such as mobile devices, have been widely used for conveying haptic sensation to users. One of the most important things in vibrotactile actuators is to be developed in the form of thin actuator which can be easily embedded into mobile devices and to provide vibrotactile signals with wide frequency band to users. Thus, this paper proposes a thin film type haptic actuator with an aim to convey vibrotactile information with high frequency bandwidth to users in mobile devices. To this end, a vibrotactile actuator which creates haptic sensation is designed and constructed based on cellulose acetate material. A cellulose acetate material charged with an electric potential can generate vibration under the AC voltage input. It is found that the motion of the actuator can have concave or convex shape by controlling a polarity of both charged membranes and the actuator performance can be modulated by increasing level of biased electric potential. The experiment clearly shows that the proposed actuator creates enough output force to stimulate human skin with a large frequency bandwidth and to simulate various vibrotactile sensations to users.