검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        4.
        2004.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, imbedded composite powders have been successfully prepared from the (Cu. Zn)/ composite salt solution. The composite (Cu, Zn)/ powders were formed by drying the solution at 200~ in the hydrogen atmosphere. Photocatalytic characteristics was evaluated by detecting the decomposition ratio of aniline blue with UV-visible spectrophotometer(Shimazu Co., UV-1601). Phase analysis of (Cu, Zn)/ composite powders was carried out by XRD and DSC, and powder size was measured with TEM. The mean particle size of composite powders was about 100mm. As the reduction temperature increases, a few zinc sulfide and oxide phases was formed and copper oxide phase was reduced. The decomposition ratio of aniline blue was about 80% under the UV irradiation by the TiO phase in the composite (Cu, Zn)/ powders and similar decomposition ratio of 80% was obtained at the UV lightless condition by virtue of Cu and Zn compounds.
        4,000원
        6.
        2003.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, imbedded copper matrix powders have been successfully prepared from the () composite salt solution. The composite powders were formed by drying the solution at 200~40 in the hydrogen atmosphere. Photocatalytic characteristics was evaluated by detecting TOC (total organic carbon) amount with TOC analyzer (model 5000A Shimadzu Co). Phase analysis of composite powders was carried out by XRD, DSC and powder size was measured with TEM. The mean particle size of composite powders was about 100 nm and a few zinc and copper oxide phases was included. The reduction ratio of TOC amount was 60% by the composite powders under the UV irradiation for 8 hours
        4,000원
        8.
        2002.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to obtain the nano size composite powders by mechanical alloying method for useful composite catalysis, the effects of mechanical alloying time on the formationof composite powders were analyzed. The phase transformation behaviors were experimented as the heat treating temperature increased. Homogeneous 10wt% Cu-rutile type composite powders were synthesized in 40 hours by mechanical alloying. After 60 hours mechanical alloying 50 nm size powders were obtained. Both the phase of mechanically alloyed 10 wt% and pure powders were not transformed to anatase after annealing at the temperature range between 350 to 500 . The intermetallic compound of O was formed after 10 hours mechanical alloying, however it could be considered that this intemetallic phase dose not prevent the transformation of rutile to the anatase phase after heat treatment at the temperature between 350 and .
        4,000원