Poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) 가지형 공중합체를 원자전달라디칼 중합을 통해 합성하여 전기변색소자의 전해질에 적용하였다. 가소화된 고분자 전해질은 가소제로서 propylene carbonate (PC)/ethylene carbonate (EC) 혼합물을 도입하여 제조하였으며, Lithium tetrafluoroborate (LiBF4), lithium perchlorate (LiCIO4), lithium iodide (LiI) and lithium bistrifluoromethanesulfonimide (LiTFSI)를 사용하여 염의 종류에 따른 영향을 조사하였다. 광각 x-선 산란(WAXS)과 시차주사 열량법(DSC) 측정 결과 고분자 전해질의 구조와 유리전이온도(Tg)가 변하였고, 이는 POEM 내의 에테르의 산소와 리튬염 사이의 상호작용으로 인해 변했다는 것을 FT-IR 분광법을 통하여 확인하였다. 투과전자현미경(TEM) 측정 결과 PVC-g-POEM 가지형 공중합체의 미세상분리 구조가 PC/EC와 리튬염의 도입에도 변하지 않는 것을 관찰하였다. 가소화된 고분자 전해질은 poly(3-hexylthiophene) (P3HT) 전도성 고분자를 이용한 전기변색소자에 적용되었다.
원자전달 라디칼 중합을 이용하여 poly(styrene sulfonic acid) 47 wt%를 가진 poly(vinylidene fluoride-co-chlorotrifluoroethylene)-g-poly(styrene sulfonic acid) (P(VDF-co-CTFE)-g-PSSA) 가지형 공중합체를 합성하였다. 티타늄 아이소프로폭사이드(TTIP)와 가지형 공중합체를 졸-겔 공정을 통하여 TiO2/가지형 공중합체 복합막을 제조하였다. TTIP는 가지형 공중합체의 친수성을 가진 PSSA 영역에만 선택적으로 결합하였으며 그곳에 TiO2 나노 입자가 형성되어 성장하였다. 이와 같은 결과를 적외선과 자외선 분광학으로 확인할 수 있다. 함수량과 이온 교환 능력 (IEC)는 TTIP의 함량에 따라 감소하였고 이것은 막이 가진 술폰산의 수가 감소하기 때문이었다. TTIP가 5 중량%일 때, 막의 기계적 강도는 증가하고 수소이온 전도도도 유지되었다.
본 연구에서는 poly(vinyl chloride) (PVC)가지형 공중합체 전해질과 헤테로폴리산(HPA)을 이용하여 유무기 합성 전해질막을 제조하였다. poly(vinyl chloride)-g-poly(styrene sulfonic acid) (PVC-g-PSSA)는 PVC의 이차 염소의 직접적인 개시를 이용한 atom transfer radical polymerization (ATRP)로 합성하였다. 이때, HPA 나노입자는 수소 결합을 통해 PVC-g-PSSA 가지형 공중합체와 결합하는 것을 FT-IR spectroscopy를 통하여 확인하였다. 전해질막의 수소이온 전도도는 HPA의 질량 분율이 0.3이 될 때까지 상온에서 0.049에서 0.068 S/cm로 증가하였다. 이것은 HPA 나노입자 고유의 전도도와 가지형 공중합체가 가지고 있는 술폰산의 강화된 산도 때문이라고 추정된다. 합습률은 HPA의 질량 분율이 0.45까지 증가할수록 130에서 84%로 감소하였다. 이것은 HPA나노입자와 고분자 메트릭스 사이의 수소 결합의 상호작용 때문에 물을 흡수하는 site의 수가 감소한 결과라고 볼 수 있다. 열중량 분석결과 HPA의 농도가 증가할수록 전해질막의 열적 안정성이 강화된다는 것을 알 수 있었다.
Poly(vinyl chloride) (PVC) 주사슬과 poly(hydroxyethyl acrylate) (PHEA) 곁사슬로 구성된 가지형 공중합체를 원자전달라디칼 중합을 통해 합성하였다. PVC의 2차 염소원자의 직접적인 개시반응에 의해 친수성인 PHEA 단량체를 그래프팅시켰다. 이렇게 합성된 PVC-g-PHEA을 술포석시닉산(SA)를 사용하여 가교시켰으며, 이는 가지형 공중합체의 -OH 그룹과 SA의 -COOH와의 에스테르 반응임을 FT-IR 분광법을 이용하여 분석하였다. 이온교환능(IEC)은 SA 함량이 증가함에 따라 계속하여 증가하여 0.87 meq/g까지 도달하였고, 이는 전해질막에 이온 그룹수가 증가하기 때문이다. 하지만, 함수 율은 SA 함량이 20 wt%까지는 증가하다 그 이상에서는 감소하였다. 또한 수소 이온 전도도도 SA 함량에 따라 증가하여 20 wt% SA 농도에서 0.025 S/cm의 최대값을 나타내었고, 이는 SA 함량이 증가함에 따라 이온 그룹의 수가 증가하는 효과와 가교가 증가하는 효과가 서로 경쟁적으로 일어나기 때문으로 사료된다.