검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2003.01 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to obtain the operating characteristics of SMMIAR process for biological nitrogen·phosphorus removal. SMMIAR was operated at HLR(Hydraulic loading rate) of 39.6, 52.8, 63.4 and 79.2ℓ/㎡/d respectively and the operating parameters such as intermittent aeration time ratio of aerobic/anoxic, DO and microorganism concentration were changed to confirm the optimum operating condition. The concentrations of the wastewater BOD, TN(Total nitrogen) and TP(Total phosphorus) were 150, 30 and 7.5㎎/ℓ respectively. Achieving better removal efficiencies of BOD, TN and TP up to 90, 85.4 and 95.4% respectively, we must keep in operation condition of SMMIAR by 0.75 of time ratio of aerobic/anoxic and by minimum 45 minutes of oxic period simultaneously.
        2.
        1999.08 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to evaluate capability of dyeing wastewater treatment for 3 type reactors. These reactors were Packed Bed Reactor(PBR), Fluidized Bed reactor(FBR) and Moving Media Complete Mixing Activated Sludge reactor(MMCMAS). Experiments of PBR and FBR were performed by various packing ratios and organic loading rates, experiments of MMCMAS were performed by various organic loading rates In order to obtain SBOD_5 removal efficiencies of more than 90%, the F/Mv ratios of PBR, FBR, MMCMAS were 0.11 ㎏BOD/㎏MLVSS·d, 0.12 ㎏BOD/㎏MLVSS·d, and 0.37 ㎏BOD/㎏MLVSS·d, respectively. So MMCMAS system which has more active microorganisms showed better capability of organic removal and also stronger dynamic and shock loadings than those of PBR and FBR. In PBR and FBR, the media packing ratio of 20% showed better performance of organic matters removal effciencies than 10% and 30%, but sludge production rate at media packing ratio of 30% was relatively lower than that of 10% and 20%. When more than 90% organic matters removal efficiency was obtained, the ratios of attached biomass to total biomass at PBR, FBR, MMCMAS were 89∼99%, 87∼98%, and 54∼80%, respectvely. The ratio of attached biomass to total biomass was low in MMCMAS. This was formation of thin biofilm due to shear force between rotating disc and water. The average sludge production rates(㎏VSS/㎏BODrem.) of PBR, FBR and MMCMAS were 0.20, 0.29 and 0.54, respectively.