리튬 이온 배터리(LIB) 수요는 화석 연료에 대한 부담을 줄이기 위해 전 세계적으로 매년 증가하고 있다. LIB는 전기 자동차, 고정식 저장 시스템 및 기타 다양한 응용 분야에 사용된다. 리튬은 해수, 염수, 염호에서 구할 수 있으며 환경 친화적이고 저렴한 방법으로 추출하면 리튬 채굴의 부담을 크게 줄일 수 있다. 주로 나노여과(NF)와 같은 막 분리 공정은 용액에서 리튬 금속을 분리하는 효과적인 방법이다. 전기투석 및 전기 분해는 리튬 분리에 사용되는 다른 분리 공정이다. 역삼 투압(RO) 공정은 이미 해수 담수화를 위한 잘 정립된 방법이다. 따라서, 리튬 금속을 목적으로 사용되는 개질된 RO 분리막은 용액속에 존재하는 다른 금속 원소의 간섭에 의한 문제를 해결할 수 있는 좋은 대안 방법이다. 적합한 NF 막을 찾거나 개발하여 리튬을 선택적으로 제거하는 것은 도전적일 수 있지만 흥미로운 연구 영역이다. 이 총설에서는 나노여과, 전기투석, 전기분해 및 기타 공정을 이용한 리튬 회수에 대해 자세히 설명한다.
공유결합 유기 구조체(COF)의 한 가지로서, 공유결합 트리아진 구조체(CTF)는 이온 열 삼량 체화 반응을 통해 제조된 반복되는 육각형 트리아진 고리의 네트워크로 구성되어 본질적으로 다공성 구조를 가진다. 또한 일부 화학 물질에 대한 친화성을 높이고 다른 화학 물질을 배제하는 많은 질소 작용기를 포함한다. 조절 가능한 특성 때문에 많은 연구자들이 기체 및 액체 분리 공정을 위한 CTF의 소재를 합성하고 테스트했다. 새로운 CTF, 혼합 CTF 복합재 및 CTF 멤브레인에 대한 다양한 연구가 기체흡착, 기체분리(예 : CO2, C2H2, H2 등) 및 담수화에 대해 연구되었다. 일부 CTF 연구는 고급 컴퓨터 시뮬레이션을 통해 한계와 잠재력을 결정했으며 후속 실험에서는 광촉매 특성에 대한 CTF를 테스트하여 더 큰 지속 가능성을 위한 재활용 가능성을 제안했다. 이 총설에서는 공유결합 트리아진 구조체 기반 분리막에 대해 설명할 예정이다.
나노여과를위한 박막 나노복합체(TFN) 멤브레인 기술의 발전은 천연 자원에서 오염 물질을 제거하는 데 중요하 다. 최근에는 기존의 박막 복합체(TFC) 및 나노복합체 멤브레인에서 불가피한 단점을 극복하기 위해 다양한 금속유기구조체 (MOF) 수정이 테스트되었다. 일반적으로 MIL-101(Cr), UiO-66, ZIF-8 및 HKUST-1 [Cu3(BCT2)]은 용매 투과성 및 용질 제 거 측면에서 막 성능을 현저하게 향상시키는 것으로 입증되었다. 이 리뷰에서는 이러한 MOF가 나노 여과에 미치는 영향에 대 한 최근 연구가 논의될 것이다. 서로 다른 금속유기구조체의 동시 사용 및 고유한 금속유기구조체 레이어링 기술(예: 딥 코팅, 스프레이 사전 배치, Langmuir-Schaefer 필름 등)과 같은 다른 새로운 기능도 멤브레인 성능을 향상시켰다. 이러한 MOF 변 형 TFN 멤브레인은 각각의 TFC 및 TFN 멤브레인에서 분리 성능을 향상시키는 것으로 자주 나타났을 뿐만 아니라 많은 보 고서에서 비용 효율적이고 환경 친화적인 공정에 대한 잠재력을 설명한다.