본 논문에서는 딥러닝을 활용하여 복합재 적층판의 파괴 모드를 결정하는 방법을 제안하였다. 수많은 엔지니어링 응용 분야에서 적층 복합재의 사용이 증가함에 따라 무결성과 성능을 보장하는 것이 중요해졌다. 그러나 재료의 이방성으로 인해 복잡하게 나타나 는 파괴모드를 식별하는 것은 도메인 지식이 필요하고, 시간이 많이 드는 작업이다. 따라서 이러한 문제를 해결하기 위해 본 연구에서 는 인공 지능(AI) 기술을 활용하여 적층 복합재의 파괴 모드 분석을 자동화하는 것을 목표로 하였다. 이 목표를 달성하기 위해 적층된 복합재에서 파손된 인장 시험편의 주사 전자 현미경(SEM) 이미지를 얻어 다양한 파괴 모드를 확보하였다. 이러한 SEM 이미지는 섬 유 파손, 섬유 풀아웃, 혼합 모드 파괴, 매트릭스 취성 파손 및 매트릭스 연성 파손과 같은 다양한 파손 모드를 기준으로 분류하였다. 다 음으로 모든 클래스의 집합 데이터를 학습, 테스트, 검증 데이터 세트로 구분하였다. 두 가지 딥 러닝 기반 사전 훈련 모델인 DenseNet 과 GoogleNet을 이용해 각 파괴 모드에 대한 차별적 특징을 학습하도록 훈련하였다. DenseNet 및 GoogleNet 모델은 각각 (94.01% 및 75.49%) 및 (84.55% 및 54.48%)의 훈련 및 테스트 정확도를 보여주었다. 그런 다음 훈련된 딥 러닝 모델은 검증 데이터 세트를 활용해 검증하였다. 더 깊은 아키텍처로 인해 DenseNet 모델이 고품질 특징을 추출하여 84.44% 검증 정확도(GoogleNet 모델보다 36.84% 더 높음)를 얻을 수 있음을 확인하였다. 이는 DenseNet 모델이 높은 정밀도로 파괴 모드를 예측함으로써 적층 복합재의 파손 분석을 수행 하는 데 효과적이라는 것을 알 수 있다.
COVID-19 대유행으로 인해 병원, 진료소, 검역소 및 의료 연구 기관을 포함한 의료 시설에서 매일 수많은 의료 폐기물이 발생함에 따라 의료폐기물 처리가 심각한 문제가 되고 있다. 이전에는 전통적인 소각방법이 사용되었지만 매립지 부족 및 관련 환경 문제로 인 해 공중 보건이 위험에 처해 있다. 이런 문제를 극복하기 위해 멸균분쇄용 파쇄기를 개발하였다. 본 연구에서는 유해 및 감염성 의료폐 기물에 대한 작동 성능을 결정하기 위해 분쇄용 파쇄 시스템의 설계 및 수치해석을 수행하였다. 파쇄기의 부품은 CAD 소프트웨어를 이용하여 모델링하였으며, ABAQUS를 사용하여 유한요소해석을 수행하였다. 정적, 동적 및 피로하중 조건 하에서 파쇄기 절단 날의 해석을 수행하였으며, 의료 폐기물을 분쇄하는데 필요한 절단력을 기반으로 절단 날의 형상이 효과적임을 입증하였다. 모달 해석을 통해 구조물의 동적 안정성을 검증하였다. 또한, 절단 날의 수명을 예측하기 위해 고주기 피로해석을 통해 S-N 선도를 생성하였다. 이 를 통해 적절한 분쇄용 파쇄 시스템이 멸균 장치와 통합되도록 설계하여 의료 폐기물의 양과 처리 시간을 줄임으로써 환경 문제와 잠 재적인 건강 위험을 극복하는 방안을 제시하였다.