검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2006.09 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 FRP Rebar로 보강된 철근콘크리트 보의 휨성능을 평가할 수 있는 모형을 개발하기 위하여 인공신경망 중 다층인식자 모형을 사용하였다. 인공신경망 모형에 사용될 학습자료들은 기존 연구자료들의 데이터를 이용하였다. 입력층의 독립변수는 휨성능에 주요 요소인 폭, 유효깊이, 압축강도, FRP 보강비, FRP 균형철근비을 사용하였다. 출력층 종속변수는 실험에서 측정된 모멘트 성능을 사용하였다. 개발된 인공신경망 모형은 GFRP, CFRP, AFRP Rebar 적용이 모두 가능하며, 모형의 검증은 다른 선행 연구자들이 수행한 자료를 이용하였다. 인공신경망 모형 추정결과 ANN(0.05) 모형의 경우에 비교적 정확한 휨성능 추정값을 나타낸 반면, ANN(0.1) 모형에서는 다소 오차가 발생하였다. 인공신경망 모형의 검증결과 주어진 실험 데이터 값과 비교적 일치하고 있음을 확인할 수 있었다. 또한, 휨성능 평가 변수에 대한 민감도 분석결과 유효깊이의 영향이 가장 크고 FRP 철근비, FRP 균형철근비, 압축강도, 폭으로 분석되었다.
        2.
        2006.03 KCI 등재 서비스 종료(열람 제한)
        FRP 판은 외부 부착된 보강 판의 효과적인 부착강도의 증진으로 실질적으로 부착강도에 대한 많은 연구가 수행되어왔다. 선행연구자들은 이러한 부착강도를 알아보기 위하여 다양한 변수를 설정하여 실험을 통하여 FRP 판의 부착강도를 규명하였다. 그러나, 이러한 부착강도를 알아보기 위한 실험은 장비구축의 비용과 시간 소비가 많이 되고 수행하기 어렵기 때문에 국한적으로 수행되고 있다. 본 연구는 선행연구자들의 부착실험 데이터를 다양한 신경망 모형과 알고리즘을 적용하여 최적의 인공신경망 모형을 개발하는데 그 목적이 있다. 인공신경망 모형의 출력층은 부착강도, 입력층은 FRP 판의 두께, 폭, 부착 길이, 탄성계수, 인장강도와 콘크리트의 압축강도, 인장강도, 폭을 변수로 선정하여 학습을 수행하였다. 개발된 인공신경망 모형은 역전파 학습 알고리즘을 적용하였으며, 오차는 0.001범위에 수렴되도록 학습을 하였다. 또한, 일반화 과정은 Bayesian 기법을 도입함으로써 보다 일반화된 방법으로 과대적합의 문제를 해소하였다. 개발된 모형의 검증은 학습에 이용되지 않은 다른 선행연구자들의 부착강도 결과 값과 비교함으로서 실시하였다.