최근 늘어나고 있는 이상 기상 현상으로 산사태 위험이 점차 증가하고 있다. 산사태는 막대한 인명 피해와 재산 피해를 초래할 수 있기에 이러한 위험을 사전에 평가함은 매우 중요하다. 최근 기술 발전으로 인해 능동형 원격탐사 방법을 사용하여 더 정확하고 상세한 지표 변위 및 강수 데이터를 얻을 수 있게 되었다. 그러나 이러한 데이터를 활용하여 산사태 예측 모델을 개발하는 연구는 찾기 힘들다. 따라서 본 연구에서는 합성개구레이더 간섭법(InSAR)을 사용한 지표 변위 자료와 하이브리드 고도면 강우(HSR) 추정 기법을 통한 강수 정보를 활용하여 산사태 민감도를 예측하는 기계학습 모델을 제시하고 있다. 나아가 기계학습의 블랙박스 문제를 극복할 수 있는 해석가능한 기계학습 방법인 SHAP을 이용하여 산사태 민감도의 영향 변수에 대한 중요도를 체계적으로 평가하였다. 경상북도 울진군을 대상으로 사례 연구를 수행한 결과, XGBoost가 가장 좋은 예측 성능을 보이며, 도로로부터의 거리, 지표 고도, 일 최대 강우 강도, 48시간 선행 누적 강우량, 사면 경사, 지형습윤지수, 단층으로 부터의 거리, 경사도, 지표 변위, 하천으로부터의 거리가 산사태 예측에 영향을 미치는 주요 변수로 밝혀졌다. 특히, 능동형 원격탐사를 통해 얻은 자료인 강우 강도와 지표 변위의 절댓값이 높을수록 산사태 발생 확률이 높음을 확인하였다. 본 연구는 능동형 원격탐사 자료의 산사태 민감도 연구에서의 활용 가능성을 실증적으로 보여주고 있으며, 해당 자료를 바탕으로 시공간적 으로 변하는 산사태 민감도를 도출함으로써 향후 산사태 민감도 모니터링에 효과적으로 활용될 수 있을 것으로 기대된다.
코로나19는 비말을 통해 전염되는 호흡기 질환으로 건물의 실내 공간은 코로나19의 대규모 감염에 매우 취약한 곳이다. 집약된 토지 이용으로 인해 수많은 사람들이 고층의 건물에 밀집해 있는 도시 환경은 이러한 질병에 더 취약할 수 있다. 뿐만 아니라 도시의 인구 분포는 시간에 따라 역동적인 변화를 보이기 때문에 코로나19와 같은 전염병에 대한 역학 조사의 성공은 도시 인구의 시공간적 변화를 얼마나 잘 이해하는지에 달려있다. 하지만 특정 시간대에 특정 건물에 분포하고 있는 현재 인구 밀도를 파악하는 것은 무척 어려운 일이다. 따라서 본 연구는 특정 시간대의 도시 인구의 수평적, 수직적 분포를 보다 정확하게 추정하기 위한 대안을 제시하고자 한다. 보다 구체적으로 지리가중회귀(GWR) 모델에 기반한 대시메트릭 매핑 기법을 이용하여 건물 단위의 현재 인구를 추정하였다. 일반적으로 대시메트릭 매핑 기법은 보조 자료를 사용하여 기존의 공간 스케일을 넘어 보다 상세한 수준의 인구 분포를 추정할 수 있도록 해준다. 본 연구에서는 건물의 용도와 연면적을 보조 정보로 활용하였으며, GWR 모델을 이용하여 지역적으로 이질적인 인구 분포 특성을 반영하였다. 연구 결과, 서울시 전체에 걸쳐 집계구보다 상세한 건물 단위 수준의 인구 분포를 추정할 수 있었다. 건물 단위의 현재 인구 추정은 코로나19와 같은 팬데믹 전염병의 역학 조사나 효과적인 방역 대책 수립을 위한 중요한 기초 자료로 활용될 수 있을 것으로 기대한다.