검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        1990.09 KCI 등재 서비스 종료(열람 제한)
        In recent years, propellers with various blade configurations such as highly skewed propellers are often fitted to ships from the viewpoint of reduction of vibration and noise. In the design of such propellers, design charts based on methodical series tests are to be complemented by theoretical calculations for accurate estimation of propeller open-water characteristics. The author intended to develop a method to estimate propeller open-water characteristics based on Quasi -Vortex - Lattice Method originally developed by Lan for solving planar thin wings, The Quasi - Vortex - Lattice Method has the simplicity and flexibility of Vortex - Lattice Method. Its accuracy is comparable to that of the Vortex - Lattice Method. Converged solution can be obtained with a small number of control points and further, leading edge suction force can be calculated directly. In the present paper, a numerical method to estimate propeller open-water characteristics based on the Quasi - Vortex - Lattice Method is reviewed and its application to marine propellers is described in detail. Comparison of propeller open-water characteristics obtained by the present method with experimental data showed good agreement for a wide variety of propellers including highly skewed propellers.
        2.
        1985.10 KCI 등재 서비스 종료(열람 제한)
        As a circular cylinder has a comparatively simple shape and becomes a basic problem for flows around other various shapes of bodies, the problem of two-dimensional viscous flow around the circular cylinder has been investigated, both theoretically and experimentally. But not a few problems are left unsolved. It is well known that the calculations are successfully made with the approximations of Stokes or Oseen for very low Reynolds numbers, but as Reynolds number is increased, Oseen's approximations as well as Stokes's ones become more and more remote from the exact solution of the Navier-Stokes equations. Therefore, in this paper, the authors transform the Navier-Stokes equations into the finite difference equations in the steady two-dimensional viscous flow at Reynolds number up to 45, and then solve the solution of the Navier-Stokes equations numerically. Also, the authors examine the accuracy of the solution by means of flow visualization with aluminum powder. The main results are as follows; (1) The critical Reynolds number at which twin vortices begin to form in the rear of the circular cylinder is found to be 6 in the experiment and 4 in the numerical solution. (2) As Reynolds number is increased, it is proved that the ratio of the length of the twin vortices to the diameter is grown almost linearly, both experimentally and numerically. (3) Separation angle is also increased according to reynolds number. But it is found that it would converge into 101.3 degrees, both experimentally and numerically.
        3.
        1979.02 KCI 등재 서비스 종료(열람 제한)
        It is very important for both naval architects and ship's officers to know the maneuvering characteristics of their ships. As the abilities of a rudder which controlls a ship can be determined clearly by analyzing the results of Kempf's zig-zag maneuver and directional stability of a ship also known by Dieudonn spiral maneuver, the importance of turning test which takes much time is recently apt to be neglected. But because the test can be executed comparatively more simply than any other maneuvering tests, it gives some informations on the directional stability, and turning characteristics may be expressed simply by the results of the test, it is still often performed. In this paper several assumptions are made to simplify the turning motion of a ship. The equations of initial transient phase, the radius ofsteady turning circle, and the center of the steady turning point are derived by using the hydrodynamic derivatives. And then the approximate method of drawing the turning circle geometrically is suggested.