검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2017.05 구독 인증기관·개인회원 무료
        Proton-exchange membrane (PEM) water electrolysis is a promising technology for hydrogen production. Meanwhile, recently, hydrogen water production has attracted great attention owing to the increasing demand in healthcare market. Therefore, hydrogen water production via PEM water electrolysis has also gained much interest. The PEM is the key component dominating the hydrogen production efficiency in the system. Although a Nafion meets the criteria for a number of key physical properties required for the operation in PEM water electrolysis, it is too expensive for commercial applications. In this work, therefore, we have developed the membrane electrode assembly (MEA) prepared with cost-effective pore-filled PEMs via a nonequilibrium impregnation-reduction (I-R) method.
        9.
        2019.09 KCI 등재 서비스 종료(열람 제한)
        This paper proposes a hand-controller mechanism for manually controlled endoscopic surgical instruments. A wire-driven mechanism is typically adapted for endoscopic surgical tools because motors cannot be embedded to the joints due to the size limitation. The wire-driven mechanism requires length control of wires that are pulled and released according to the desired joint angle. It is difficult for the operator to control individual wire lengths intuitively. The hand-controller mechanism should be able to control the wires easily without complex processes. For this purpose, we propose a mechanism that can control the wire lengths with a simple mechanical structure and its optimal design method using genetic algorithm. We show the simulation and experimental results to confirm the proposed mechanism and design methods are useful for the manually controlled endoscopic surgical instrument.