검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2013.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the influence on the surface passivation properties of crystalline silicon according to silicon wafer thickness, and the correlation with a-Si:H/c-Si heterojunction solar cell performances were investigated. The wafers passivated by p(n)-doped a-Si:H layers show poor passivation properties because of the doping elements, such as boron(B) and phosphorous(P), which result in a low minority carrier lifetime (MCLT). A decrease in open circuit voltage (Voc) was observed when the wafer thickness was thinned from 170μm to 50μm. On the other hand, wafers incorporating intrinsic (i) a-Si:H as a passivation layer showed high quality passivation of a-Si:H/c-Si. The implied Voc of the ITO/p a-Si:H/i a-Si:H/n c-Si wafer/i a-Si:H/n a-Si:H/ITO stacked layers was 0.715 V for 50μm c-Si substrate, and 0.704 V for 170μm c-Si. The Voc in the heterojunction solar cells increased with decreases in the substrate thickness. The high quality passivation property on the c-Si led to an increasing of Voc in the thinner wafer. Short circuit current decreased as the substrate became thinner because of the low optical absorption for long wavelength light. In this paper, we show that high quality passivation of c-Si plays a role in heterojunction solar cells and is important in the development of thinner wafer technology.
        4,000원
        2.
        2010.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, double texturization of multi crystalline silicon solar cells was studied with laser and reactive ion etching (RIE). In the case of multi crystalline silicon wafers, chemical etching has problems in producing a uniform surface texture. Thus various etching methods such as laser and dry texturization have been studied for multi crystalline silicon wafers. In this study, laser texturization with an Nd:YVO4 green laser was performed first to get the proper hole spacing and 300μm was found to be the most proper value. Laser texturization on crystalline silicon wafers was followed by damage removal in acid solution and RIE to achieve double texturization. This study showed that double texturization on multi crystalline silicon wafers with laser firing and RIE resulted in lower reflectance, higher quantum yield and better efficiency than that process without RIE. However, RIE formed sharp structures on the silicon wafer surfaces, which resulted in 0.8% decrease of fill factor at solar cell characterization. While chemical etching makes it difficult to obtain a uniform surface texture for multi crystalline silicon solar cells, the process of double texturization with laser and RIE yields a uniform surface structure, diminished reflectance, and improved efficiency. This finding lays the foundation for the study of low-cost, high efficiency multi crystalline silicon solar cells.
        4,000원