포트홀은 아스팔트 도로 위에서 반복적인 하중으로 인해 일부가 떨어져 나가며 발생하는 패임을 의미한다. 포트홀은 습기에 취약해 특히 장마철에 큰 영향을 받으며, 이로 인해 대형교통사고와 높은 개보수 비용이 발생한다. 매년 포트홀 로 인한 피해와 사고는 언론을 통해 지속적으로 보도 되고 있다. 이러한 피해를 최소화하기 위해서는 사고가 발생하기 전 적절한 시기에 포트홀이 보수되어야 한다. 이를 위해서는 정확한 포트홀 면적 탐지가 선행되어야 한다. 포트홀 면적 의 정확한 탐지는 도로포장의 유지관리 및 보수 전략 수립에 매우 중요한 과정이다. 이에 따라 본 연구에서는 2,086의 포트홀 이미지를 기반으로 학습하고 탐지하였다. 비정형 탐지에 최적화된 Mask R-CNN을 활용하여 포트홀의 전체적인 면적을 탐지하였으며, 탐지 정확도를 높이기 위해 SwinT 백본 네트워크를 사용하였다. 그 결과, 90% 이상의 높은 정확 도로 포트홀의 면적을 탐지하였다. 추후 이 연구를 바탕으로 적절한 시기에 개보수 시기를 예측하여 포트홀로 인한 피해 와 사고를 줄이는 데 기여할 것이다.