검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, a structural integrity on the test rig with assembly plug to perform intermediate examination is evaluated. Structural analysis results between the test rig with non assembly plug and assembly plug are compared, because the assembly plug has an effect on the flow of the coolant in the test rig. A equivalent stress value on the test rig with assembly plug is increased more than the stress on the test rig with non-assembly plug. A shape optimization of the assembly plug is performed to decrease the stress. Considering a connection with the transport tool, a optimized shape of the assembly plug is presented to minimize the stress on the test rig. Using the optimized assembly plug, the equivalent stress on the test rig with the optimized plug is less than the stress on the test rig with the non-optimized plug.
        4,000원
        2.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This transport cask for radioactive materials will be used in the Gijang reactor. It will transport the Ir-192 10,000 Ci or I-131 80 Ci. In this case, the safety evaluation, such as protection of leakage of radioactive material, and radiation shield should be carried out before it is used in the research reactor. The safety regulation requires various tests, such as water spray, free drop, penetration, and water immersion. But this paper considers only the regulations related with thermal-stress and drop impact under the normal conditions because it will be used only in the research reactor building. In this paper, coupled numerical analysis was performed using finite element simulation to investigate the effect of position of tungsten and lead to enhance the safety of transport cask. As a result of simulation, it was verified that the Tungsten-Lead structure is the most durable among the cases considered in the study with a viewpoint of thermal-stress and drop impact.
        4,000원
        3.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, as the transport cask was moved in the reactor, the structural integrity on the cask had to be evaluated in the normal transport condition. The drop height of the cask was determined by the weight of the cask in the normal transport condition by regulations about assessment test. It was determined that the drop height of the cask was 1.2 m by regulations. The velocity of the drop impact was calculated to perform the drop impact analysis by the principle of the conservation of energy. Using results of the simulation about the drop impact analysis, the structural integrity assessment on the transport cask was performed by ASME Boiler and Pressure Vessel Code.
        4,000원