In reinforced concrete (RC) structures, steel corrosion can be occurred due to carbonation and chloride penetration, and these phenomenon lead to a degradation of the structural performance. Existing analytical models for corroded RC columns depend on complex empirical formulas based on specific experimental data. This study proposes a macro analytical model to predict the lateral load-resisting behavior of corroded RC columns. The proposed model is composed of a force-based nonlinear beam–column element that simulates the flexural behavior and a zero-length section element that represents the bond–slip deformation at the column base. To validate the proposed model, its results were compared and analyzed with the experimental results from existing literature. The results showed that the proposed model evaluated the maximum strength and the residual strength at a 4% drift ratio similarly to the experimental values. Furthermore, the model effectively predicted the pinching phenomenon and the hysteretic behavior under cyclic loading.