검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This study aims to evaluate the runoff reduction with permeable pavements using the SWMM analysis. METHODS: In this study, simulations were carried out using two different models, simple and complex, to evaluate the runoff reduction when an impermeable pavement is replaced with a permeable pavement. In the simple model, the target area for the analysis was grouped into four areas by the land use characteristics, using the statistical database. In the complex model, simulation was performed based on the data on the sewer and road network configuration of Yongsan-Gu Bogwang-Dong in Seoul, using the ArcGIS software. A scenario was created to investigate the hydro-performance of the permeable pavement based on the return period, runoff coefficient, and the area of permeable pavement that could be laid within one hour after rainfall. RESULTS : The simple modeling analysis results showed that, when an impervious pavement is replaced with a permeable pavement, the peak discharge reduced from 16.7 m3/s to 10.4 m3/s. This represents a reduction of approximately 37.6%. The peak discharge from the whole basin showed a reduction of approximately 11.0%, and the quantity decreased from 52.9 m3/s to 47.2 m3/s. The total flowoff reduced from 43,261 m3 to 38,551 m3, i.e., by approximately 10.9%. In the complex model, performed using the ArcGIS interpretation with fewer permeable pavements applicable, the return period and the runoff coefficient increased, and the total flowoff and peak discharge also increased. When the return period was set to 20 years, and a runoff coefficient of 0.05 was applied to all the roads, the total outflow reduced by 5195.7 m3, and the ratio reduced to 11.7%. When the return period was increased from 20 years to 30 and 100 years, the total outflow reduction decreased from 11.7% to 8.0% and 5.1%, respectively. When a runoff coefficient of 0.5 was applied to all the roads under the return period of 20 years, the total outflow reduction was 10.8%; when the return period was increased to 30 and 100 years, the total outflow reduction decreased to 6.5% and 2.9%, respectively. However, unlike in the simple model, for all the cases in the complex model, the peak discharge reductions were less than 1%. CONCLUSIONS : Being one of the techniques for water circulation and runoff reduction, a high reduction for the small return period rainfall event of penetration was obtained by applying permeable pavements instead of impermeable pavement. With the SWMM analysis results, it was proved that changing to permeable pavement is one of the ways to effectively provide water circulation to various green infrastructure projects, and for stormwater management in urban watersheds.
        4,000원
        2.
        2015.03 구독 인증기관·개인회원 무료
        지구 온난화로 인한 이상기후로 발생하는 경제손실과 화석연료 중심의 에너지 소비구조로 인한 자원고 갈의 가속화로 오늘날 선진국을 중심으로 온실가스 감축, 에너지 자립도를 높이기 위한 녹색성장이 주목 받고 있으며, 한국 정부도 국제 변화에 부응하고자 저탄소 녹색성장을 추진하고 있다. 그 일환 중 저탄소 친환경 도시의 교통대안으로 자전거 이용이 주목 받고 있으며, ʻ10대 자전거 거점 도시ʼ 조성, 국가 자전거 도로 구축 사업 등이 장려되어 향후 자전거도로의 연장은 더욱 증가할 전망이다. 그러나 자전거 이용 활성화 노력의 비해 국내의 자전거도로 포장은 라벨링, 종·횡방향 균열, 단차, Blow up 등의 파손으로 상태가 불량하며 부적절한 유지관리로 이용자의 만족도를 충족시키지 못하고 있다. 이에 중앙대학교에서는 자전거도로 포장의 주요 파손발생율을 저감시키고자 배합설계, 다짐 방법의 개선, 적절한 줄눈 간격의 설정 등에 관한 연구를 진행하고 있으며, 본 연구에서는 과다한 줄눈 간격으로 인한 횡방향 균 열 발생율 저감에 초점을 맞추었다. 현재 자전거도로의 줄눈 간격은 일반 도로와 같이 6.0m를 적용하고 있 다. 자전거도로는 환경하중만을 고려하고 포장 두께는 10~15cm로, 차량하중이 재하되고 포장 두께가 20~30cm인 일반도로의 줄눈 간격을 적용하는 것은 부적절하다고 판단된다. 이에 본 연구에서는 포러스 콘 크리트 포장을 적용한 자전거도로 포장의 줄눈 간격에 따른 거동 변화를 분석하여 적정 줄눈 간격을 제시하 고자 하였다. 연구 수행을 위해 <그림 1>과 같이 폭 1.5m, 줄눈 간격을 각각 1.5m, 3.0m, 6.0m를 적용한 테스트베드를 마련하였고, 슬래브의 Center, Edge, End, Corner에 변형률계를 설치하여 슬래브에서 발생 하는 거동을 분석하고자 하였다. 또한 포장 깊이에 따라 써머커플을 매설하여 포장 내부의 온도변화를 측정 하고자 하였다. 테스트베드는 2014년 7월에 시공되었으며, 2015년 1월까지 거동 측정을 실시하였다.
        3.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This study aims to develop a strength test method for irregularly shaped concrete block paver. METHODS : Ten (10) different types of concrete block pavers including porous and dense blocks were tested for strength capacities. Destructive and non-destructive methods were used to develop a strength test method for irregularly shaped concrete block paver. The flexural strength evaluation was conducted in accordance to KS F 4419, while compressive strength was conducted with a 45.7mm-diameter core specimen. The impact echo test method was used to evaluate the elastic modulus. Finally, regression analysis was used to investigate the relationship between flexural strength, compressive strength and elastic modulus based on their corresponding test results. RESULTS : The flexural strength of the tested block pavers ranged from 4MPa to 10MPa. At 95% confidence level, the coefficients of determination between compressive-flexural strength relationship and compressive strength-elastic modulus relationship were 0.94 and 0.84, respectively. These coefficients signified high correlation. CONCLUSIONS : Using the test method proposed in this study, it will be easier to evaluate the strength of irregularly shaped concrete block pavers through impact echo test and compressive test, instead of the flexural test. Relative to the flexural strength requirement of 5MPa, the minimum values of compressive strength and elastic modulus, as proposed, are 13.0MPa and 25.0GPa, respectively.
        4,000원
        4.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This study aims to evaluate the performance of interlocking block pavement system for low speed highway. METHODS: Through on-site monitoring, environmental impact assessment of interlocking block pavement such as heat island reduction, traffic safety, noise pollution were evaluated as compared with asphalt pavement. Also the pavement condition and roughness were evaluated according to performance period. RESULTS: Surface temperature of interlocking block pavement was about 7 degree lower than asphalt pavement in midsummer. Compared to asphalt pavement, vehicle speed reduction effect of interlocking block pavement was about 2kph. For low speed driving, the noise pollution was measured at a similar level for both asphalt and interlocking block pavement. After 42month service period, the breakage of block was only 0.24% for the whole surveyed area. IRI of interlock block pavement was estimated within the range of 5~8m/km. CONCLUSIONS : Depending on the performance monitoring results such as heat island reduction, providing traffic safety and keeping a good pavement condition for a long service period, it assures that interlocking block pavement was applicable for low speed road.
        4,000원
        5.
        2013.09 구독 인증기관 무료, 개인회원 유료
        4,000원