재하속도에 따른 용접강관의 모멘트-곡률 거동특성에 관한 해석적 연구를 수행하였다. 3차원 열역학해석을 통하여 용접이음부의 잔류응력을 산출하였다. 그리고 동적소성모델이 적용된 탄소성 유한요소해석 프로그램을 이용하여 잔류응력을 고려한 용접강관(Welded pipe)의 동적해석을 수행하였다. 그리고 용접이음부가 없는 일반강관(Seamless pipe)에 대한 동적거동과의 비교를 통하여 해석을 수행하여 용접강관의 해석력과 해석결과는 용접강관의 모멘트가 일반강관의 모멘트에 비해 낮은 응답을 보였으나 재하속도가 증가함에 따라 모멘트 응답의 차이는 점차 감소하는 경향을 보였다.
최근, 교량교각과 같은 기둥구조물의 사용성능을 향상시킴과 동시에 복잡한 도심지 내 효율적 공간활용을 위해 콘크리트 충전강관(CFT: concrete-filled steel tube)의 적용이 점차 증가하고 있다. 이러한 기둥구조물의 정확한 설계를 위해서는 재료 및 기하학적 특성에 따른 콘크리트 충전강관 기둥의 거동에 관한 실험적 연구가 요구된다. 이에 본 연구에서는 압축강도실험을 통하여 외경-두께비 (D/t) 및 강재-콘크리트 단면적비 (As/Ac)에 따른 콘크리트 충전강관 기둥의 극한강도 분포특성에 대해 명확히 파악하였다. 또한 콘크리트 배합강도에 따른 콘크리트 충전강관 기둥의 극한강도 분포특성을 실험을 통하여 명확히 파악하였다. 실험결과의 고찰을 통하여 압축하중을 받는 콘크리트 충전강관 기둥의 극한강도는 콘크리트 강도보다 강과의 단면특성에 주로 의존함을 알 수 있었다.
교량의 교각과 같은 원형기둥구조물의 성능과 강도을 향상시키기 위해 최근 콘크리트 충전강관(CFT: concrete-filled steel tube)의 적용이 점차 증가하고 있다. 이러한 콘크리트 충전강관 구조물의 정확한 소성설계를 위해서는 사용된 재료인 강재 및 콘크리트의 대변형 거동을 구현할 수 있는 소성모델이 필요하다. 본 연구에서는 사용강재의 실험을 통하여 제안된 소성모델을 적용한 탄소성 대변형 해석을 개발하였으며 콘크리트 충전강관 기둥 해석과 실험 결과에 비교하여 그 정도 및 타당성을 검증하였다. 그리고 개발된 프로그램을 이용하여 콘크리트 충전강관 기둥의 초기처짐이 극한장도에 미치는 영향 및 상관관계를 명확히 파악하였다.
연약지반에서 측방 유동에 의해 주변 지반에 큰 변형을 일으키며 이로 인하여 말뚝기초에 손상을 입히게 된다. 이러한 경우 설치된 말뚝을 수동말뚝이라 하며 편재하중이 작용하게 되고 이로 인해 측방토압을 받게 되며 측방변위가 발생하여 상부구조물에 영향을 미치게 된다. 그러나 국내의 경우 이러한 말뚝과 교대 변위간의 관계에 대한 예측 및 메커니즘에 대한 연구가 부족한 실정이다. 본 연구에서는 교대이동에 대한 해석을 위해 입체, 판 및 프레임 요소를 복합적으로 해석할 수 있는 연성 3차원 유한요소해석 프로그램을 개발하였다. 개발된 연성해석 프로그램을 이용하여 연약지반상 형상비(두께-지름비, t/D비)를 변수로 한 교대강관파일의 변형특성을 명확히 하였다.
최근, 건설되어지는 강구조물들의 장경간화 및 고층화로 인하여 고강도강재의 적용이 점차 요구되고 있다. 고강도강재는 적용구조물들을 공간 및 두께들 감소시킴으로써 외관성 및 경제성을 증가시킬 수 있는 장점이 있다. 이러한 고강도 강재의 적용을 위해서는 좌굴에 대한 기준이 필요하나 현재 국내의 경우 이러한 좌굴에 관한 연구가 미흡하다. 이에 본 연구에서는 3차원 탄소성 유한변위 프로그램을 이용하여 고강도 박스단면 트러스 부재의 좌굴거동에 대한 해석적 연구를 수행하였다. 고강도강재를 적용한 박스단면 트러스부재의 허용 압축응력에 대한 기준을 제안하였으며 그 적용성을 확인하였다. 그리고 고강도 트러스 부재의 설계에도 적용할 수 있음을 명확히 하였다.
최근, 복잡해진 도심지의 토지이용률을 향상시키기 위해 원형 강기둥 구조물의 건설이 점차 요구되고 있다. 원형강기둥 구조물은 유효단면적을 감소함과 동시에 내하력 증가 효과를 기대할 수 있다. 그러나 이러한 원형 강기둥 구조물은 지진 및 피로와 같은 반복하중 작용시 국부좌굴 및 대변형 현상이 발생하며 이로 인하여 대상구조물의 성능이 감소된다. 이러한 내하력 감소 현상을 방지하기 위해 최근 원형 강기둥에 환보강재(다이아프램)의 적용을 고려할 수 있다. 수직보강재의 적용으로 인한 좌굴내하력 및 내진성능의 증가효과는 이미 연구된 바 있으나 다이아프램에 관한 연구는 아직 전무한 실정이다. 단조 및 반복하중 작용시 국부좌굴 및 변형을 효과적으로 방지하기 위해서는 원형강교각에 적용된 다이아프램 설치위치가 중요한 역할을 한다. 그러나 설치위치의 변화에 따른 다이아프램의 내진성증 증가효과에 관해서는 아직 명확히 밝혀지지 않았다. 본 연구에서는 기하학적, 재료학적 비선형을 고려한 유한요소프로그램을 이용하여 탄소성해석을 수행하였다. 즉, 다이아프램 설치위치를 파라메타로하여 내진성능을 검토하였다. 본 연구에서는 각 해석모델의 내하력 및 에너지 소산효율을 비교함으로서 원형강교각에 적용된 다이아프램에 관한 내진성능을 명확히 하였다.
최근 복잡해진 도심지의 토지 이용률을 높이기 위하여 원형 강교각이 건설이 요구되고 있다. 원형강교각의 경우 줄어든 단면으로 좌굴 내하력이 감소하며 이에 대한 방안으로 수직 보강재의 적용을 고려할 수 있다. 그러나 수직보강재를 적용한 원형 강교각의 좌굴 내하력의 증가의 효과에 대해서는 아직 명히 파악되지 않았다. 본 연구에서는 먼저 탄소성 유한요소해석 통하여 보강재를 적용하지 않은 무보강 원형 강교각과 수직보강재가 보강된 원형 강교각에 대해서 좌굴내하력을 검토하였다. 그리고, 형상비(R/t)에 따른 좌굴내하력의 변화를 기존의 실험식과 비교하여 그 효과를 검토하였다. 그리고 원형강교각의 수직 보강재를 적용하여 폭과 두께에 따른 좌굴 내하력을 비교 검토하였다. 그리고 수직 보강재를 적용한 원형 강교각에 대한 내진성능을 검토하였다.
본 연구에서는 임의의 반복하중 작용시 강구조물에 발생하는 대변형 및 반복소성거동을 정확히 예측하기 위하여 유한변위이론과 반복소성이력모델을 적용한 3차원 탄소성 유한요소 해석기법을 개발하였다. 반복소성이력모델은 강재의 단조재하실험 및 반복하중실험 결과에 기초하여 정식화되었다. 개발된 해석기법의 정도는 Bilinear모델 및 미소변위이론을 적용한 해석기법 및 실험결과와 비교하여 검증하였다. 본 연구에서 개발한 유한변위이론과 반복소성이력모델을 적용한 3차원 유한요소 해석기법이 임의의 반복하중을 받는 원형강교각의 대변형 및 반복소성거동을 정확히 예측할 수 있음을 알 수 있었다.
Recently, as steel structures become higher and more long-spanned, application of high-strength steels is increasing gradually. However, criteria and example for design of high-strength steel are not built up. exiting criteria for structural steels is not proper for economical design of high-strength steel. Moreover, exiting criteria will be decrease the fatigue performance of steel bridge using high-strength steel. Therefore, criterion for application of high-strength steel must be established. In this paper, the behavior of plate girder using high-strength vertical stiffeners was clarified by carrying out layer elastic-plastic finite element analysis using finite deformation theory. In order to optimize the design and construction of plate girder using high-strength vertical stiffener, criterion for application of high-strength vertical stiffener is proposed.
Almost the steel bridges are manufactured and constructed by using weld process. The welding is necessary for connecting the flange, web and stiffener of steel bridges. However, residual stress and welding deformation producted by welding is a causes of decreasing the load carrying capacity of steel bridges. therefore, it is need to consider the initial stresses by welding when design the steel bridge. However, the influence of initial stress producted by welding on load carrying capacity of steel bridges is not elucidated. In this paper, the initial stress state on the flange, web and stiffener of steel bridges are clarified by carrying out 3-dimensional non-steady heat conduction analysis and 3-dimensional thermal elastic-plastic analysis. The influence of initial stress by welding on load carrying capacity of steel bridges is clarified by carrying out 3-dimensional elastic-plastic finite element analysis using finite deformation theory.
최근 강구조물의 장경간화 및 고층화로 인하여 고강도강재의 사용이 점차 증가하고 있다. 고강도강재(POSTEN60, POSTEN80)가 적용된 강구조물의 정확한 내진설계를 위해서는 반복하중 작용시 발생하는 대변형 및 비선형반복거동을 구현할 수 있는 해석기법이 필요하다. 본 연구에서는 고강도강재의 단조재하실험 및 반복하중실험을 기초하여 반복소성모델을 제안하였다. 제안된 소성모델과 유한변위이론을 적용한 3차원 탄소성 유한변위해석기법을 개발하였으며 이를 실험값과 비교하여 검증하였다. 검증된 3차원 탄소성 유한변위해석을 이용하여 고강도 원형강교각의 내진해석을 수행하였다. 또한, 고강도 원형강교각의 지름-두께비에 따른 내진성능을 명확히 하였다.
최근 강구조물의 고층화 및 장경간화로 인하여 SM570강재와 같은 고강도 강재의 적용을 필요로 하고 있다. 강구조물의 정확한 내진설계를 위한 내진구조해석시 비선형 반복하중을 받는 강재의 특성을 명확히 포현할 수 있는 구성식이 필요하다. SM570는 최근 그 사용이 증가하고 있으나 아직 반복소성거동의 구현 및 정식화에 관한 연구는 아직 미진하다. 본 연구에서는 인장 및 저싸이클 피로 실험을 통하여 SM570 강재의 반복소성모델을 제안하였다. 제안된 반복소성모델을 3차원 유한요소에 적용하여 SM570이 사용된 원형 강교각의 내진해석을 수행하였다. 실험결과와 내진해석을 통하여 본 연구에서 제안한 구성식은 SM570이 사용된 강구조물의 복잡한 소성거동을 정도 높게 구현함을 알 수 있었다.