Common feature of displacement-based sensing is that the high-frequency resolution is limited, and often relatively low sampling rates are used. Another problem is that integration of accelerometer data that causes low-frequency noise amplification, and potentially more problematic differentiation of displacement measurements which amplify high-frequency noise. A multi-rate Kalman filtering approach is proposed to solve these problems. This method yields highly accurate motion data.
Common feature of displacement-based sensing is that the high-frequency resolution is limited, and often relatively low sampling rates are used. Another problem is that integration of accelerometer data that causes low-frequency noise amplification, and potentially more problematic differentiation of displacement measurements which amplify high-frequency noise. A multi-rate Kalman filtering approach is proposed to solve these problems. This method yields highly accurate motion data.