This paper presents a PID automatic gain-tuning algorithm for the electronic throttle valve which is driven by wire. Since the system characteristics of position control for electronic throttle valve are so complicated that both the real time robustness and the manufacturing cost must be considered for mass production. To resolve this paradox, a kind of algorithm called RLS (Recursive Least Square) is adopted for the control of the ETB (Electronic Throttle Body). Using this algorithm, the PID gains can be adjusted automatically with the estimated system parameters. Furthermore, a pre-filter is supplemented for the sake of the robustness against the friction and loads. From the industrial requests for the system, the design specifications are decided as follows: the settling time should be less than 1 sec and the overshoot should be kept below 3%. The results of the experiments based on this approach show that the high robustness can be achieved while the system stability is satisfied steadily. A parameter estimation scheme and a gain-tuning algorithm have been properly combined and utilized in this research and the effectiveness is verified through the real experiments.
Though the final goal of mobile robot navigation is to be autonomous, operators intelligent and skillful decisions are necessary when there are many scattered obstacles. There are several limitations even in the camera-based tele-operation of a mobile robot, which is very popular for the mobile robot navigation. For examples, shadowed and curved areas acnnot be viewed using a narrow view-angle camera, especially in bad weather such as on snowy or rainy days. Therefore, it is necessary to have other sensory information for reliable tele-operations. In this paper, sixteen ultrasonic sensors are attached around a mobile robot in a ring pattern to measure the distances to obstacles. Acollision vector is introduced in this paper as a new tool for obstacle avoidance, which is defined as a normal vector from an obstacle to the mobile robot. Based on this collision vector, a virtual reflection force is generated to avoid the obstacles and then the reflection force is transferred to an operator who is holding a joystick to control the mobile robot. Relying on the reflection force, the operator can control the mobile robot more smoothly and safely. For this bi-directional tele-operation, a master joystick system using a hall sensor was designed to resolve the existence of nonlinear sections, which are usual for a general joystick with two motors and potentiometers. Finally, the efficiency of a force reflection joystick is verified through the comparison of two vision-based tele-operation experiments, with and without force reflection.