Recently, as the complexity of system becomes increased, it becomes important to manage, track, and control the configuration information of various assets of complex systems such as plant and factory over system lifecycle. We call it configuration management (CM). CM enables us to establish and maintain the consistency of a system’s functional and physical attributes with its design requirements, and operational information throughout its lifecycle. In this study, we look through the main concept of CM and relevant research works. Also, we address the CM processes suitable to small-and-medium sized plant in terms of modeling viewpoint.
In recent years, the diminishing of operation and maintenance cost using advanced maintenance technology is attracting many companies’ attention. Especially, the heavy machinery industry regards it as a crucial problem since a failure of heavy machinery requires high cost and long downtime. To improve the current maintenance process, the heavy machinery industry tries to develop a methodology to predict failure in advance and to find its causes using usage data. A better analysis of failure causes requires more data so that various kinds of sensor are attached to machines and abundant amount of product usage data is collected through the sensor network. However, the systemic analysis of the collected product usage data is still in its infant stage. Many previous works have focused on failure occurrence as statistical data for reliability analysis. There have been less works to apply product usage data into root cause analysis of product failure. The product usage data collected while failures occur should be considered failure cause analysis. To do this, this study proposes a methodology to apply product usage data into failure cause analysis. The proposed methodology in this study is composed of several steps to transform product usage into failure causes. Various statistical analysis combined with product usage data such as multinomial logistic regression, T-test, and so on are used for the root cause analysis. The proposed methodology is applied to field data coming from operated locomotive and the analysis result shows its effectiveness.
Recently, thanks to emerging ICT (Information and Communication Technology) such as IoT (Internet of Things), wireless telecommunication, and various sensor technologies, the concept of connected car has been highlighted in the automotive industry. In the connected car technology, one application is to diagnose and predict the car status in a real-time way based on gathered data. To this end, it is necessary to develop the diagnostics/prognostics algorithms for a specific part or component in a car. The results of diagnostics and prognostics could provide drivers with useful information used for advanced maintenance policy such as condition-based maintenance. In this study, we have reviewed the relevant previous research works before developing detailed algorithms.
The O&M (Operation and Maintenance) phase of offshore plants with a long life cycle requires heavy charges and more efforts than the construction phase, and the occurrence of an accident of an offshore plant causes catastrophic damage. So previous studies have focused on the development of advanced maintenance system to avoid unexpected failures. Nowadays due to the emerging ICTs (Information Communication Technologies) and sensor technologies, it is possible to gather the status data of equipment and send health monitoring data to administrator of an offshore plant in a real time way, which leads to having much concern on the condition based maintenance policy. In this study, we have reviewed previous studies associated with CBM (Condition-Based Maintenance) of offshore plants, and introduced an algorithm predicting the next failure time of the compressor which is one of essential mechanical devices in LNG FPSO (Liquefied Natural Gas Floating Production Storage and Offloading vessel). To develop the algorithm, continuous time Markov model is applied based on gathered vibration data.
Recently, the optimisation of end-of-life (EOL) product remanufacturing processes has been highlighted. In particular, computer remanufacturing becomes important as the amount of disposed of computers is rapidly increasing. At the computer remanufacturing, depending on the selections of used computer parts, the value of remanufactured computers will be different. Hence, it is important to select appropriate computer parts at the reassembly. To this end, this study deals with a decision making problem to select the best combination of computer parts for minimising the total remanufacturing computer cost. This problem is formulated with an integer nonlinear programming model and heuristic search algorithms are proposed to resolve it.