In the present study, FE analysis was performed for characterising structural strength of a seat frame w.r.t. varying sectional shapes as well as different materials of the seat back frame based on the FMVSS 207 regulation in order to obtain the design outline of a lightweight seat frane structure. Four types of materials, i.e., SAPH440, Al7021, Al6082 and carbon/epoxy composites were applied to the seat back frame type beams and their bending behaviours were compared by three point bending FE analysis. Consequently, the lightweight structure of seat back frame with the equivalent strength characteristics of conventional frame was suggested.
Finite Element analysis were carried out to investigate the deformation behaviours of a buckled automotive seat frames made of three different types of materials, i.e., SAPH440, Al6082-T6 and Al7021-T7, when they were subject to external load, based on the ECE R14 regulation to achieve lightweight structure. Also, several thicknesses were applied to the seat frame structures of each material for characterising deformations. It was found that light weight seat frame structure was obtained compared to conventional steel structure when it was made of aluminium under the condition of satisfying ECE R14 regulation. Interpretation result, when changing from SAPHH440 material has a thickness of 1.5mm to Al material has a thickness of 3.0mm, that could checking weight lightening about 47%.
Crosslinked PVA membranes were fabricated by solution casting of the substituted PVA (SPVA), synthesized by the reaction of PVA with glycidyl acrylate (GMA) without catalyst in different molar ratios [-OH(PVA)/GMA], followed by electron beam irradiation. The chemical changes in the SPVA compared to PVA were confirmed from H-NMR and FT-IR analysis. Crosslinking degree and dimensional stability of the crosslinked PVA membranes also investigated by measuring gel fraction and dimensional change of the membranes under acidic and basic solution.