검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2012.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The present study is intended to comparatively investigate the changes in microstructure and tensile properties at room and elevated temperatures in commercial AM50(Mg-5%Al-0.3%Mn) and 0.3 wt%CaO added ECO-AM50 alloys produced by permanent mould casting. The typical microstructure of AM50 alloy was distinctively characterized using two intermetallic compounds, β(Mg17Al12) and Al8Mn5, along with α-(Mg) matrix in an as-cast state. The addition of a small amount of CaO played a role in reducing dendrite cell size and quantity of the β phase in the AM50 alloy. It is interesting to note that the added CaO introduced a small amount of Al2Ca adjacent to the β compounds, and that inhomogeneous enrichment of elemental Ca was observed within the β phase. The ECO-AM50 alloy showed higher hardness and better YS and UTS at room temperature than did the AM50 alloy, which characteristics can be mainly ascribed to the finer-grained microstructure that originated from the CaO addition. At 175˚C, higher levels of YS and UTS and higher elongation were obtained for the ECO-AM50 alloy, demonstrating that even 0.3 wt%CaO addition can be beneficial in promoting the heat resistance of the AM50 alloy. The combinational contributions of enhanced thermal stability of the Ca-containing β phase and the introduction of a stable Al2Ca phase with high melting point are thought to be responsible for the improvement of the high temperature tensile properties in the ECO-AM50 alloy.
        4,000원