Carbon dioxide enrichment for greenhouse crops has generally been a standard commercial practice for many years. Vegetable crops such as tomato, cucumber, and lettuce respond positively to the CO2 enrichment. But improper CO2 enrichment leads to physiological damage and economical loss. This study was carried out to develop a CO2 concentration control algorithm considering growth stage and efficiency. The measurand was CO2 consumption rate and top fresh weight that represents growth stage. The weight of top fresh lettuce as a whole in the tray was measured through a non-destructive method. The demand in CO2 concentration according to growth stage was investigated. The results are summarized as follows. 1. The CO2 consumption rate could be measured within the error of ± 15.4mgCO2/hr in the range of CO2 concentration of 500-1500ppm. 2. The weight of top fresh lettuce could be measured within the error ± 4.3g in the range of 0-1400g. 3. The CO2 control model developed could determine an economical CO2 supply rate considering CO2 consumption rate and leakage rate. 4. The CO2 control algorithm based on the control model was composed of feedforward control for maintaining a stable CO2 concentration level, and feedback control with CO2 consumption rate and top fresh weight for adapting to the change in CO2 demand by growth stage. 5. For the performance test with the developed control algorithm on lettuce the decrease in CO2 supply rate was obtained without a significant decrease in top fresh weight.