검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2011.08 KCI 등재 서비스 종료(열람 제한)
        This paper presents a method of sonar grid map matching for topological place recognition. The proposed method provides an effective rotation invariant grid map matching method. A template grid map is firstly extracted for reliable grid map matching by filtering noisy data in local grid map. Using the template grid map, the rotation invariant grid map matching is performed by Ring Projection Transformation. The rotation invariant grid map matching selects candidate locations which are regarded as representative point for each node. Then, the topological place recognition is achieved by calculating matching probability based on the candidate location. The matching probability is acquired by using both rotation invariant grid map matching and the matching of distance and angle vectors. The proposed method can provide a successful matching even under rotation changes between grid maps. Moreover, the matching probability gives a reliable result for topological place recognition. The performance of the proposed method is verified by experimental results in a real home environment
        2.
        2011.05 KCI 등재 서비스 종료(열람 제한)
        This paper presents a method of topological modeling using only low-cost sonar sensors. The proposed method constructs a topological model by extracting sub-regions from the local grid map. The extracted sub-regions are considered as nodes in the topological model, and the corresponding edges are generated according to the connectivity between two sub-regions. A grid confidence for each occupied grid is evaluated to obtain reliable regions in the local grid map by filtering out noisy data. Moreover, a convexity measure is used to extract sub-regions automatically. Through these processes, the topological model is constructed without predefining the number of sub-regions in advance and the proposed method guarantees the convexity of extracted sub-regions. Unlike previous topological modeling methods which are appropriate to the corridor-like environment, the proposed method can give a reliable topological modeling in a home environment even under the noisy sonar data. The performance of the proposed method is verified by experimental results in a real home environment.
        3.
        2006.09 KCI 등재 서비스 종료(열람 제한)
        Improving practicality of SLAM requires various sensors to be fused effectively in order to cope with uncertainty induced from both environment and sensors. In this case, combining sonar and vision sensors possesses numerous advantages of economical efficiency and complementary cooperation. Especially, it can remedy false data association and divergence problem of sonar sensors, and overcome low frequency SLAM update caused by computational burden and weakness in illumination changes of vision sensors. In this paper, we propose a SLAM method to join sonar sensors and stereo camera together. It consists of two schemes, extracting robust point and line features from sonar data and recognizing planar visual objects using multi-scale Harris corner detector and its SIFT descriptor from pre-constructed object database. And fusing sonar features and visual objects through EKF-SLAM can give correct data association via object recognition and high frequency update via sonar features. As a result, it can increase robustness and accuracy of SLAM in indoor environment. The performance of the proposed algorithm was verified by experiments in home –like environment.