This study aims to investigate the qualitative and quantitative performance of concrete defect using Pulsed Thermography (PT) and Pulse Phase Thermography (PPT) techniques. The experimental study was carried out on a concrete specimen in-placed artificial defects with various depths and sizes. The signal-to-noise technique was used to compare the contrast between the two methods. The results showed that the thermal images obtained from PPT show clearer than those from PT (using contrast-based method).
In this study, an experimental test is conducted on a concrete specimen using passive thermography (IRT) which is an effective and modern non-destructive test (NDT) method in detecting delaminations. The present work evaluates the detectability of delaminations with different sizes during the daytime by the absolute contrast technique. In addition, the most suitable time for delamination inspection of concrete structures is also proposed.
Uplift phenomenon of container cranes occurred during the past earthquakes. Therefore, the evaluation of the potential uplift of the container cranes is an important task when the demand for trade is increasing. The objective of this study is to investigate the probability of the uplift occurrence of the container crane subjected to a wide range of earthquake intensity. The uplift results are then fitted to the log-normal cumulative distribution function (CDF).
The dynamic behaviour of container crane under seismic loading is a complex issue, especially for assessing uplift. The pin support is commonly used to model the contact between crane’s legs and the ground/rails in low seismicity area. However, the behaviour of the structure is quite different under high seismic intensity because the crane’s wheels are not fixed to the rails in operation. In this study, therefore, a 3-D finite element (FE) model was simulated with gap elements to consider the uplift behavior. In addition, the vertical reaction of the crane’s legs were investigated as well.
In this study, an experimental study of Impulse Thermography was carried out on a concrete specimen with in-placed artificial defects at different depths and dimensions. Then, all the data were processed by Pulse Phase Thermography technique by performing Fast Fourier Transformation. The results were compared with the absolute contrast method.
The purpose of this research is to consider the qualitative and quantitative performance of reinforced concrete deteriorations using active infrared thermography (IRT) technique. An experiment of five different cases of environmental conditions was conducted on a concrete slab in laboratory. A comparison of the IRT results between normal and reinforced concrete is also discussed. The results showed that the absolute contrast between defective area and non-defective area increases with the increment of ambient temperature. Besides, the values of absolute contrast above delamination obtained from normal concrete showed high than those under effect of reinforcing steel bar.
This research aim to investigate the qualitative and quantitative performance of concrete deteriorations using Pulse Square Thermography (PST) technique. An experimental test of ten cases was conducted on a concrete slab specimen under different meteorological conditions. The results showed that the absolute contrast between defective area and sound area decreases with the falling of ambient temperature. Besides, the delamination with identical size but placed at a deeper position indicates lower absolute contrast than the shallow delamination.