PURPOSES : Unlike European standards, domestic performance assessment standards for truck mounted attenuators (TMAs) was first stipulated in 2014 using the NCHRP Report 350 of 1993 as the standard instead of the 2009 MASH of the United States. The purpose of this study is to present an improvement in the domestic performance evaluation criteria for TMAs..
METHODS : Considering the latest TMA performance evaluation standards in the U.S. and Europe, domestic performance evaluation criteria must improve stipulations related to impact speeds, impact conditions, impact cars, and support trucks. The performance change in the TMAs according to the variation in the impact speed, impact condition, impact vehicle, and support vehicle was investigated using finite element analysis (FEA).
RESULTS : The TMA for an impact speed of 100 km/h showed a limit to the safety of the occupants of the collision vehicle and workers on the road for a collision speed of 120 km/h. The safety of the workers on the road was also not guaranteed for the collision of the remaining 73.8% of vehicles that exceeds the maximum impact car weight of 1,300 kg, the lower 26.2% of the total mass composition of domestic passenger cars. In addition, a TMA that satisfied only the conditions under which the vehicle was hit head-on to the center of the TMA did not reduce the risk of a secondary collision of the impact vehicle. Furthermore, the safety of workers on the road was not guaranteed when a travel distance of a support truck of 10 tons or more was applied to a work vehicle of less than 10 tons.
CONCLUSIONS : To improve the safety of road traffic, a performance level corresponding to an impact speed of 120 km/h was added to the domestic TMA performance evaluation standard, and the eccentricity and oblique collision conditions were mandatory. Furthermore, the maximum impact vehicle weight of 1300 kg was raised to 2000 kg, and the test requester had to present support trucks of lower and upper weights such that TMA mounting trucks of various weights could be used.
국내 낙석 방지시설 관리지침(국토해양부, 2008a)에는 48~61kJ에 상응하는 낙석방지울타리의 와이어 로프와 지주에 대한 규격이 제시되어 있으나, 제시된 규격이 상응하는 흡수가능에너지와 어떤 상관관계가 있는지 근거가 불명확한 실정이다. 국내 규격 기준의 국도용 낙석방지울타리(국토해양부, 2008b)와 고속 도로용 낙석방지울타리(국토해양부, 2008b)는 50 kJ 정도의 낙석에너지를 방호할 수 있는 것으로 보고되 어 있는데 객관적이고 합리적인 성능평가 방법을 사용해서 얻은 결론인지 근거가 명확하지 않다. 따라서 낙석방지울타리의 성능을 객관적이고 합리적으로 평가할 수 있는 유럽기준(EOTA, 2008)을 준용한 시험 방법과 평가기준을 이용하여 국내 규격기준 낙석방지울타리의 성능을 평가하고자 하였다. 아래와 같은 실 물충돌시험과 LS-DYNA 프로그램을 이용한 컴퓨터 시뮬레이션을 통하여 시험을 수행하였다. 국내 고속 도로용 낙석방호울타리는 50kJ의 낙석충돌에너지를 방호할 수 있는 것으로 평가되었으며 간격 유지대를 200mm 연장할 필요가 있는 것으로 파악되었다.
국내 차량방호울타리 성능시험조건과 도로설치조건이 달라 대형교통사고 유발 등의 문제점이 야기되고 있어 2012년 11월에 도로안전시설 설치 및 관리 지침(국토교통부, 2012)이 개정되었다. 성능시험조건이 기존 평지부에서 성토부로 변경되었고 성토부에 설치되는 연성 차량방호울타리는 지주의 수평지지력(현장지지력)이 측정되어야하며 그 값이 실물충돌시험장에서 확인된 수평지지력의 90% 이상이 되도록 하고 있다. 따라서 현장 지주지지력이 시험장 지주지지력의 90% 보다 작은 경우에는 지주의 매입깊이 증대나 다른 보강방안을 적용하여 90% 이상이 되도록 하여야 한다. 본 연구에서는 SMART Highway N등급(지 침 SB3-B)과 H1등급(지침 SB5-B) 지주의 성토부 수평지지력이 평지부의 90% 이상이 나타나게 하는 지주 보강방안을 결정하고자 하였다. 그림 1과 같은 다양한 지주 보강방안에 대하여 지주 수평지지력 시험을 수행하였고 다양한 보강방안에 대한 지주 횡방향 힘-변위 관계가 그림 2에 나타나있다. 흙의 저항체적을 증가시키는 그림 1(b)와 Bracing을 설치하는 그림 1(c)와 같은 보강방안이 시험장 지주지지력의 90% 이상이 되게 하는 보강방안으로 조사되었다.
국내 연안에 시공된 호안구조물은 불투수성 콘크리트 재료로 이루어져 있고 급경사 또는 직립의 획일적인 형식이다. 경사 및 직립식 호안 구조물은 파랑에너지가 감소 효과가 미비하며 호안 구조물의 저면 세굴로 인한 구조물 붕괴, 반사파에 의한 주변해빈 침식으로 자갈층이 형성되는 문제점을 발생시키고 있다.(국토해양부, 2010) 사석구조물의 안정성에 대한 연구는 Tompson and Shuttler(1975)가 최초로 수행한 이래 많은 연구가 있었지만 기존에 수행된 대부분의 연구는 파랑에너지 저감 및 해안침식 저감을 위한 사석 및 블록 개발에 대한 내용이 주된 내용으로 사석의 형상 및 배열에 따른 파(Wave)의 흐름특성에 대한 연구는 수행된 사례가 거의 없는 실정이다.
따라서 본 연구에서는 형상과 배열이 다른 인공사석들을 제작하여 형상과 배열이 파(Wave)에 미치는 영향을 수리모형실험을 통하여 분석하였다.
동일한 마찰면적과 공극률을 가진 호안구조물의 경우 파도의 진행방향과 연직방향으로 접촉면이 클수록 처오름 및 반사율이 크게 측정되었으며 특히 짧은 주기에서는 공극률에 저류된 물이 배수되기 전에 다음 파의 영향으로 처오름을 가중시키는 것으로 분석되었다. 2차원 유속측정 결과 X방향 유속은 처오름과 반사율 측정 결과의 경향과 비슷한 결과를 보였으며 Y방향 유속은 파의 흐름을 인위적으로 바꾼 배열이 크게 측정되었다. 또한 1:1.5 경사와 1:2.0 경사에 따른 흐름특성 분석 결과 처오름 및 반사율이 1:2.0 경사가 낮게 측정되었으며 입사유속 대비 반사유속 저감율 역시 1:2.0 경사가 높은 것으로 측정되었다. 해안 침식 방지를 위한 호안구조물은 에너지 감소를 위한 물리적 특징과 함께 형상과 배열도 중요하다고 평가되었다.
현재 국내 연안에 시공된 호안구조물은 불투수성 콘크리트 재료로 이루어진 급경사 또는 직립의 획일적인 형식으로 파랑에너지 저감 효과가 미비하며 저면 세굴로 인한 구조물 붕괴 및 반사파에 의한 주변해빈 침식의 문제점을 발생시키고 있다. 이러한 파랑에너지에 의한 연안의 침식 및 자갈화 문제를 해결하고자 많은 연구가 선행되었지만 특정 구조물을 개발하여 효율성을 검증하는데 한정되어있는 실정으로 호안구조물의 물리적 특성(마찰면적, 공극률, 배열)이 파랑에너지에 미치는 영향에 대한 연구는 미비한 실정이다.
따라서 본 연구에서는 다양한 마찰면적과 공극률 그리고 배열을 가지는 인공사석들을 제작하여 호안구조물의 물리적 특성이 파랑에너지에 미치는 영향을 수리모형실험을 통하여 분석하였다.
12가지 사석형상에 대한 1차 규칙파 수리모형실험 결과 공극률이 같을 때 마찰면적이 증가할 경우 마찰면적이 가장 큰 구조물이 전체 주기와 파고에 대해서 최대처오름과 반사율이 가장 낮게 측정되어 마찰면적이 증가는 파랑에너지 감소에 효과적인 것으로 평가되었으며 마찰면적이 같을 때 공극률의 증가는 공극률이 가장 큰 구조물이 파랑에너지 감소가 가장 잘되는 것으로 평가되었으나 짧은 주기에서는 큰 공극률에 저류된 물이 처오름을 가중시켜 최대처오름을 증가시키는 것으로 분석되었다. 또한 마찰면적과 공극률이 증가할수록 파랑에너지에 효과적이나 마찰면적과 공극이 작더라도 파도의 진행방향과 연직방향으로 접촉면적이 작은 사석 배열이 마찰면적과 공극이 크지만 파도의 진행방향과 연직방향으로 접촉면적이 큰 사석 배열보다 파랑에너지 감소에 효과적인 것으로 분석되어 사석의 배열이 파랑에너지 감소에 중요한 인자로 평가되었다.
2차 불규칙파 수리모형실험 결과 동일한 마찰면적과 공극률을 가진 호안구조물의 경우 파도의 진행방향과 연직방향으로 접촉면이 클수록 처오름 및 반사율이 크게 측정되었다. 2차원 유속측정 결과 X방향 유속은 처오름과 반사율 측정 결과의 경향과 비슷한 결과를 보였으며 Y방향 유속은 파의 흐름을 인위적으로 바꾼 배열이 크게 측정되었다. 또한 1:1.5 경사와 1:2.0 경사에 따른 흐름특성 분석 결과 처오름 및 반사율이 1:2.0 경사가 낮게 측정되었으며 유속 저감 효율도 1:2.0 경사가 높은 것으로 측정되었다. 해안 침식 방지를 위한 호안구조물은 물리적 특성과 배열이 파랑에너지 저감에 중요하다.