A TiO2/CNT nanohybrid photocatalyst is synthesized via sol-gel route, with titanium (IV) isopropoxide and multi-walled carbon nanotubes (MWCNTs) as the starting materials. The microstructures and phase constitution of the nanohybrid TiO2/CNT (0.005wt%) samples after calcination at 450oC, 550oC and 650oC in air are compared with those of pure TiO2 using field-emission scanning electron microscopy and X-ray diffraction, respectively. In addition, the photocatalytic activity of the nanohybrid is compared with that of pure TiO2 with regard to the degradation of methyl orange under visible light irradiation. The TiO2/CNT composite exhibits a fast grain growth and phase transformation during calcination. The nanocomposite shows enhanced photocatalytic activity under visible light irradiation in comparison to pure TiO2 owing to not only better adsorption capability of CNT but also effective electron transfer between TiO2 and CNTs. However, the high calcination temperature of 650oC, regardless of addition of CNT, causes a decrease in photocatalytic activity because of grain growth and phase transformation to rutile. These results such as fast phase transformation to rutile and effective electron transfer are related to carbon doping into TiO2.
In this study, the control of microstructure for increasing surface roughness of Al with an electro-chemical reaction and a post treatment is systematically investigated. The Al specimen is electro-chemically treated in an electrolyte. In condition of the post treatment at 100oC for 10 min, a change of the surface microstructure occur at 50V (5 min), and a oxidized layer is at 400V, to which lead a decreasing surface roughness. The minimum temperature of the post treatment for a change of microstructure is 80oC. Moreover, in the condition of 300V (5 min), the electro-chemical reaction is followed by the post treatment at 100oC, the critical enduring time for the change of microstructure is 3 min. The longer post treatment time leads to the rougher surface. The treated Al specimen demonstrate better heat release ability owing to the higher surface roughness than the non-treated Al.
The most general photocatalyst, TiO2 and WO3, are acknowledged to be ineffective in range of visible light. Therefore, many efforts have been directed at improving their activity such as: band-gap narrowing with non-metal element doping and making composites with high specific surface area to effectively separate electrons and holes. In this paper, the method was introduced to prepare a photo-active catalyst to visible irradiation by making a mixture with TiO2 and WO3. In the TiO2-WO3 composite, WO3 absorbs visible light creating excited electrons and holes while some of the excited electrons move to TiO2 and the holes remain in WO3. This charge separation reduces electron-hole recombination resulting in an enhancement of photocatalytic activity. Added Ag plays the role of electron acceptor, retarding the recombination rate of excited electrons and holes. In making a mixture of TiO2-WO3 composite, the mixing route affects the photocatalytic activity. The planetary ball-mill method is more effective than magnetic stirring route, owing to a more effective dispersion of aggregated powders. The volume ratio of TiO2(4) and WO3(6) shows the most effective photocatalytic activity in the range of visible light in the view point of effective separation of electrons and holes.
The effects of angiogenesis inhibitor from the extract libraries of Korean and Chinese medicinal plants were investigated using a protein microarray chip. Protein chip was constructed by immobilization of integrin α5β1 on protein chip base plates and employed far screening active extracts that inhibit the integrin-fibronectin interaction from the extract libraries. The 100 extracts of medicinal plants were obtained from extract bank of National Institute of Crop Science, RDA. The 14 extracts among 100 extract libraries were shown efficient inhibition activity for the interaction between integrin-fibronectin. The medicinal plants of 14 extracts were Vitex negundo var. incisa (Lam.) C.B. Clarke, Epimedium koreanum Nakai, Cedrela sinensis A. Juss, Ipomea aquatica Forsk, Schisandra chinensis Baill, Pulsatilla koreana Nakai, Paeonia lactiflora Pall. var.hortensis Makino, Oenothera odorata, Allium chinense, Allium victorialis var. platyphyllum MAKINO, Polygonatum odoratum Druce var. pluriflorum Ohwi, Hosta lancifolia, Agrimonia pilosa L. var. japonica Nakai and Potentilla chinensis SER. The Paeonia lactiflora, Oenothera, and Agrimonia pilosa from these 14 extracts libraries were shown strong inhibition activity of integrin α5β1.