In this study, the laser welding experiments were performed with the 1 mm thickness of Al 6061-T6 using by 5 kW fiber laser welding system. The optimum laser welding condition of the lap joint has been investigated by analyzing the penetration depth and the porosity fraction through observation of the cross-sections. Based on the test results, the sound joint was obtained from the welding condition with the power of 2 kW and the focal position of -0.8 mm at the continuous laser welding speed of 2 mpm. Also, the tensile strength of the sound joint after heat treatment(170℃, 12hr) was increased almost 87% that of the base material. Especially, the fatigue test result of the sound joint showed that the fatigue cycle was 3×10 4 at the highest test load of 100 MPa.
In this study, the curvature FSW experiments were performed with the 2 mm thickness of Al 5083-O using by the 5 axis(X/Y/Z/A/C) position control system. For the mechanical test of the butt joints, the tungsten heavy alloy as the tool material without necessary after finishing the heat treatment such as quenching was used. In particular, the insertion depth and the welding speed was changed at the constant rotation speed in order to select the optimum FSW condition. The test results were visually satisfactory for the approximate joint length of 300 mm. Sound joint was formed at the condition of 1.9 mm-1000 rpm-100 mm/min and its tensile strength of joint was the most high almost the same as that of the base material.
In this study, the weldability of ADC12 FSW joints obtained by the load control type of the FSW machine is examined. The higher the tool plunge downforce the wider the range of the optimum FSW conditions is obtained. However, there is a limit of optimum range with increasing the tool plunge downforces. The three different types of defects are formed in ADC12 FSW joints, depending on the welding conditions. One is a large mass of flash due to the excess heat input, another is a cavity or groove-like defects caused by insufficient heat input and the other is a cavity caused by the abnormal stirring. As for the abnormal stirring, it is very clearly seen that the shape of the top part on the advancing side in the stir zone is completely different. For this type of defect, the effect of the tool plunge downforce is not significant, though the size of the defect due to insufficient heat input significantly is decreased with the increasing downforce
In vitro high-frequency plant regeneration of Muscari comosum var. plumosum through somatic embryogenesis was obtained via two developmental pathways: direct embryos and multiple shoots regenerated from embryogenic callus. Flower bud with pedicel, receptacle, petal and ovary wall, floral stalk and leaf as explants were cultured in MS medium supplemented with various plant growth regulators. Embryos formed directly from pedicel, receptacle and floral stalk. Depending on explant sources, the optimal medium was MS medium supplemented with 0.2 mg/L IBA and 0.3 mg/L BA, 3.0 mg/L IBA and 3.0 mg/L BA, and MS-free medium for pedicel, receptacle, and floral stalk, respectively. Multiple shoots regenerated from embryogenic cal]i which was initiated from petal, ovary and leaf were observed in MS medium with different concentrations and combinations of hormone. The most suitable medium for each type of explant was 3.0 mg/L IBA and 3.0 mg/L BA(petal and ovary) and 5.0 mg/L IBA and 5.0 mg/L BA (leaf) Furthermore, the combination of 0.1 mg/L 2,4-D and 1.0 mg/L BA was also good for all sources of explants not only for direct embryo formation, but also, for embryogenic callus induction.