검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The increasing presence of antibiotics in aquatic ecosystems has raised serious concerns about their ecological and human health impacts. In response, extensive research has focused on the degradation and removal of these stubborn pollutants. Among various approaches, heterogeneous photocatalysis has gained prominence due to its effectiveness in eliminating diverse contaminants from water. This method stands out for its cost-efficiency, environmental friendliness, and high performance, making it a practical solution for pollutant mitigation. Graphitic carbon nitride (g-C3N4) has attracted significant attention for developing advanced photocatalysts. Its non-metallic nature, robust stability, suitable electronic configuration, and favorable 2.7 eV band gap make it an excellent candidate. However, g-C3N4 faces challenges such as limited visible-light absorption, rapid charge recombination, low oxidation power, and poor texture, which hinder its photocatalytic efficiency. These issues can be addressed by developing g-C3N4-composite-based magnetic semiconductor photocatalysts possessing compatible energy bands. Integrating magnetic materials with g-C3N4 photocatalysts offers new possibilities for easy separation and recyclability, enhancing practical use. While previous studies have also detailed various modification methods for g-C3N4-based materials, the structure-performance relationships of g-C3N4, particularly for detecting and degrading antibiotics, need further exploration. This review critically examines the utilization of g-C3N4-based magnetic photocatalysts for antibiotic removal, exploring fabrication techniques, physical properties, and performance metrics. Various strategies to optimize their efficiency, including doping, heterojunction formation, and surface modification, are also covered. It also delves into the mechanisms of photocatalytic antibiotic degradation, addressing challenges and opportunities in developing these materials. Ultimately, we propose that the synergy of magnetic components into g-C3N4 not only represents a significant advancement in photocatalyst design but also opens new avenues for sustainable wastewater treatment technologies, demonstrating a high level of novelty in the field. The review provides valuable insights into current research and potential advancements in antibiotic remediation.
        6,900원
        2.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Compared to carbon nanotubes (CNTs), graphene possesses high strength due to wrinkled surface texture caused by a high density of surface defects which benefits more contact with the polymer material than a rolled-up CNT. In the present review, we have discussed and compared the various properties of CNTs (1-D) and graphene (2-D) obtained in experimental results. The effects of covalent and non-covalent functionalization of CNTs and graphene on the properties of its composites have also been reviewed and compared. A comparative analysis has been carried out between CNTs and graphene-reinforced polymer composites. Furthermore, the synergetic effects of CNTs and graphene hybrid nanofiller on the mechanical properties of polymer composites have also been briefly discussed. Finally, this review concludes with the potential application and future challenges are discussed with regards to filler and their polymer composites.
        5,100원
        3.
        2005.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Room temperature kinetics of degradation of nerve agent simulants and sarin, an actual nerve agent at the surface of different carbon based adsorbent materials such as active carbon grade 80 CTC, modified whetlerite containing 2.0 and 4.0 % NaOH, active carbon with 4.0 % NaOH, active carbon with 10.0 % Cu (II) ethylenediamine and active carbon with 10.0 % Cu (II) 1,1,1,5,5,5-hexafluoroacetylacetonate were studied. The used adsorbent materials were characterized for surface area and micropore volume by N2 BET. For degradation studies solution of simulants of nerve agent such as dimethyl methylphosphonate (DMMP), diethyl chlorophosphate (DEClP), diethyl cyanophosphate (DECnP) and nerve agent, i.e., sarin in chloroform were prepared and used for the uniform adsorption on the adsorbent systems using their incipient volume at room temperature. Degradation kinetics was monitored by GC/FID and was found to be following pseudo first order reaction. Kinetics parameters such as rate constant and half life were calculated. Half life of degradation with modified whetlerite (MWh/NaOH) system having 4.0 % NaOH was found to be 1.5, 7.9, 1206 and 20 minutes for DECnP, DEClP, DMMP and sarin respectively. MWh/NaOH system showed maximum degradation of simulants of nerve agents and sarin to their hydrolysis products. The reaction products were characterized using NMR technique. MWh/NaOH adsorbent was also found to be active against sulphur mustard.
        4,000원