Copper nanoparticles (CuNPs) are considered of great importance due to their high catalytic and antimicrobial activities. This study focuses on the preparation and characterization of CuNPs, and on their antibacterial/antifungal activities. A copper salt (copper sulfate pentahydrate) as precursor, starch as stabilizing agent, and ascorbic acid as reducing agent were used to fabricate CuNPs. The resulting product was characterized via different techniques such as X-ray diffractrometry (XRD), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning electron microscopy (SEM) to confirm its characteristic properties. Employing the Scherrer formula, the mean crystallite sizes of copper (Cu) and cuprous oxide (Cu2O) nanocrystals were found to be 29.21 and 25.33 nm, respectively, as measured from the main X-ray diffraction peaks. The functional groups present in the resulting CuNPs were confirmed by FTIR. In addition, the engineered CuNPs showed antibacterial and antifungal activity against tested pathogenic bacterial and fungal strains.
Two pitches with different average molecular structures were electrospun and compared in terms of the properties of their fibers after oxidative stabilization, carbonization, and activation. The precursor with a higher molecular weight and greater content of aliphatic groups (Pitch A) resulted in better solubility and spinnability compared to that with a lower molecular weight and lower aliphatic group content (Pitch B). The electrical conductivity of the carbon fiber web from Pitch A of 67 S/cm was higher than that from Pitch B of 52 S/cm. The carbon fiber web based on Pitch A was activated more readily with lower activation energy, resulting in a higher specific surface area compared to the carbon fiber based on Pitch B (Pitch A, 2053 m2/g; Pitch B, 1374 m2/g).