검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        2.
        2013.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The development of hollow carbon balls by CO2 oxidation of two types of carbon blacks was studied. Super P (SP) and Denka Black (DB) were used for this study. Specificsurface area (SSA), structural parameters, and microstructures were examined using Brunauer, Emmett and Teller apparatus, X-ray diffraction spectroscopy, and transmission electron microscope (TEM), respectively. The SSAs of both oxidized carbon blacks increased after oxidation. The SSAs of raw DB and SP were 73 m2/g and 60 m2/g, respectively. Maximum SSAs of oxidized DB and SP were 152 m2/g and 253 m2/g, respectively. The d002 of DB and SP showed almost no change after oxidation. The Lc of raw DB (38Å) and SP (19Å) increased with increasing weight loss. The Lc of SP increased up to 254 at 96% weight loss. The SSA increased about twice in DB (148 m2/g) and about four times in SP (254 m2/g) after 3 h oxidation compared with the original carbon blacks. Through TEM observation the outer parts of the oxidized carbon blacks showed a rigid shell structure and the inner parts looked empty. Generally it looked like an angular soccer ball, so we named it ‘hollow carbon ball.’ It is expected that the hollow carbon ball can be used as catalyst supports.
        3,000원
        3.
        2008.05 KCI 등재 서비스 종료(열람 제한)
        This paper describes the adsorption/desorpton efficiency of a modified activated carbon by irradiated microwave to treat toluene. By employing microwave energy, the regeneration time was considerably shortened compared with conventional thermal heating regeneration. New adsorbent called ACB(Activated Carbon-Bentonite) was prepared from powder activated carbon with mixing bentonite as a binder. Specific surface area, average pore size and total pore volume of ACB were calculated from the nitrogen adsorption/desorption isotherm. The surface of ACB was characterized with scanning electron microscope(SEM). The results showed that the specific surface area, total pore volume, average pore size of ABC was not influenced by regenerating cycle with microwave irradiation. Toluene was adsorbed onto ACB which desorbed by MW irradiation. Absorption capacity of ACB was 0.117 gtoluene/ gACB. Desorption efficiency of toluene increased as higher microwave output was applied.