검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2012.09 서비스 종료(열람 제한)
        Early growth response 1 (Egr1) is an immediate early response gene which is induced by various external stimuli and acts as transcription factor to direct second-wave gene expression leading to cell growth, differentiation and/or apoptosis. It is well known that Egr1 regulates transcription of a cluster of genes in cancers and luteinizing hormone (LH) beta subunit in the pituitary. In addition to function of Egr1 in cancers and pituitary, we recently showed that Egr1 acts as a local master regulator to mediate estrogenic actions in the uterus. However, regulatory mechanism by which Egr1 directs transcription of its downstream target genes in the uterus remains to be yet explored. Thus, we have tried to identify direct target genes of Egr1 in the uterus by analyzing mRNA microarray data sets followed by in silico promoter analyses with chromatin immunoprecipitation (CHIP). mRNA expression profiles of Egr1(-/-) uteri and Egr1(-/-) ovaries were compared to those of wildtype mice to provide a potential list of direct target genes of Egr1 in the uterus. Whereas Egr1 is rapidly and transiently induced in the ovary and the uterus by external stimuli, LH and estrogen, respectively with a similar manner, a list of differentially expressed genes between Egr1(+/+) and Egr1(-/-) mice were barely overlapped between these two datasets. This result suggests that the transcriptional network of Egr1 in the uterus is quite different from that in the ovary. The list of differentially expressed genes in Egr1(-/-) uterus was enriched by RT-PCR. In silico analyses with MatInspector provided evidence that Egr1 binding sites are relatively enriched in -500 bp promoter regions of genes in the list. CHIP assays for Egr1 antibody with uterine tissues 2 h after estrogen treatment reinforced the possibility that genes identified in this study such as Gadd45g and Lbh could be directly regulated by Egr1 in uterine context. Collectively, we show that bioinformatic analyses of expression profiles with in silico analyses could be a useful tool to enrich potential candidates of direct target genes of transcription factors.
        2.
        2012.09 서비스 종료(열람 제한)
        Early growth response 1 (Egr1) belongs to the Egr family of zinc finger transcription factors that regulates cell growth, differentiation, and apoptosis. Egr1(-/-) female mice are infertile due to anovulation resulting from luteinizing hormone β subunit (LHβ) deficiency. While it is clear that Egr1 is a critical factor to regulate transcription of LHβ in the pituitary gland, function of Egr1 and mechanisms by which estrogen (E2) and/or progesterone (P4) regulates Egr1 in uterus still remain unexplored. Using multiple approaches, here we have characterized regulatory mechanism of Egr1 induction in the uterus and uterine phenotypes of Egr1(-/-) mice. Eight-week-old female mice were ovariectomized (OVX) and rested for a week. Uteri of OVX mice treated with various concentrations of E2 and/or other hormones were collected at 2h after hormone treatment unless otherwise indicated. Collected uteri were utilized for mRNA microarrays, realtime-RT-PCR, Western blotting, and histological analyses for immunofluorescence and BrdU staining. Egr1 mRNA was rapidly induced with the highest level at 2h after E2 treatment and gradually decreased to basal levels at 12 h. E2-induced phosphorylation of ERK1/2 and AKT, and Egr1 transcription were effectively inhibited by pretreatment of ICI 182,780. Pharmacological inhibition of ERK1/2, but not AKT significantly blocked E2-induced Egr1 expression in the uterus. P4 effectively dampened E2-dependent Egr1 transcription and its antagonistic effects were partially interfered with RU486 pretreatment. Interestingly, BrdU incorporation experiments provided evidence that epithelial cells undergo hyperproliferation in Egr1(-/-) mice. This is consistent with microarray data that several key factors for cell cycle progression such as cyclin Ds and E2F1 are overexpressed in these mice. Furthermore, in the uteri of OVX Egr1(-/-) mice treated with E2+P4, stromal cell proliferation is severely impaired and epithelial cells persistently proliferating. While ovulation, fertilization and embryo development normally occur in Egr1(-/-) mice treated with a superovulation regime to rescue LH deficiency, embryo implantation is severely impaired. Blastocysts were not able to implant even on day 6 of pregnancy in Egr1(-/-) mice. In addition to embryo implantation, uterine response to artificial decidualization in hormone-primed Egr1(-/-) OVX mice was relatively less than that of wildtype mice. Collectively, our results show that Egr1, which is rapidly induced by E2-ER-ERK1/2 pathways, is a critical factor to control E2-dependent cell proliferation via regulation of a spectrum of genes for embryo implantation in the uterus.