We are motivated by both the accumulating evidence for the connection of solar variability to the chemistry of nitrogen oxide in the atmosphere and recent finding that the Galactic cosmic-ray (GCR) influx is associated with the solar northsouth asymmetry. We have analyzed the measured pH in precipitation over the 109 stations distributed in the United States. We have found that data of pH in precipitation as a whole appear to be marginally anti-correlated with the solar asymmetry. That is, rain seems to become less acidic when the southern hemisphere of the Sun is more active. The acidity of rain is also found to be correlated with the atmospheric temperature, while not to be correlated with solar activity itself. We have carried on the analysis with two subsamples in which stations located in the east and in the west. We find that the pH data derived from the eastern stations which are possibly polluted by sulfur oxides and nitrogen oxides are not correlated with the solar asymmetry, but with the temperature. On the contrary, the pH data obtained from the western stations are found to be marginally anti-correlated with the solar asymmetry. In addition, the pH data obtained from the western stations are found to be correlated with the solar UV radiation. We conclude by briefly pointing out that a role of the solar asymmetry in the process of acidification of rain is to be further examined particularly when the level of pollution by sulfur oxides and nitrogen oxides is low.
Pollution characteristics of leachate and underground soil of the two landfill sites were investigated. Domestic wastes were dumped in the two adjacent landfill sites. Only small portion of S landfill site was filled with domestic wastes at the first stage of dumping, and most portion of the site was filled with construction wastes. However Y landfill site was filled with mostly domestic wastes.
Higher concentrations of organic pollutants including VOCs were measured in Y landfill site leachate than in S landfill site.
Underground soils of the two landfill sites were analyzed by the two kinds of leaching methods, KEP (Korean Extraction process) and Acid Digestion. Underground soils of the both landfill sites were not polluted by leachates. Underground soils of the two were composed of fine silty material. Thus it is found that fine silty soil layer of the sea shore may be used as a landfill site.