검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        1998.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To understand the basic physics underlying large spatial fluctuations of intensity and Doppler shift, we have investigated the dynamical charctersitics of the transition region of the quiet sun by analyzing a raster scan of high resolution UV spectral band containing H Lyman lines and a S VI line. The spectra were taken from a quiet area of 100"×100" located near the disk center by SUMER on board SOHO. The spectral band ranges from 906 Å to 950 Å with spatial and spectral resolution of 1" and 0.044 Å, respectively. The parameters of individual spectral lines were determined from a single Gaussian fit to each spectral line. Then, spatial correlation analyses have been made among the line parameters. Important findings emerged from the present analysis are as follows. (1) The integrated intensity maps of the observed area of H I 931 line (1×10 4 K) and S VI 933 line (2×10 5 K) look very smilar to each other with the same characterstic size of 5". An important difference, however, is that the intensity ratio of brighter network regions to darker cell regions is much larger in S VI 933 line than that in H I 931 line. (2) Dynamical features represented by Doppler shifts and line widths are smaller than those features seen in intensity maps. The features are found to be changing rapidly with time within a time scale shorter than the integration time, 110 seconds, while the intensity structure remains nearly unchanged during the same time interval. (3) The line intensity of S VI is quite strongly correlated with that of H I lines, but the Doppler shift correlation between the two lines is not as strong as the intensity correlation. The correlation length of the intensity structure is found to be about 5.7' (4100 km), which is at least 3 times larger than that of the velocity structure. These findings support the notion that the basic unit of the transition region of the quiet sun is a loop-like structure with a size of a few 10 3 km, within which a number of unresolved smaller velocity structures are present.
        5,100원
        2.
        1988.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We have investigated hydrodynamical behaviors of spicules by solving numerically the hydrodynamic equations subject to proper boundary conditions using the method of characteristics. We examined the behaviors of MHD slow mode waves propagating through rigid magnetic flux tubes which were excited by the pressure perturbations at the lower boundary. It is found that the spicules are identified as the manifestation of the movement of the transition region being pushed upward by collisions with the shock waves. One of the most important findings is the presence of the rebound shocks and their roles. We interpreted the rebound shocks in terms of the observed recurrent spicules.
        4,300원