검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2014.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        A package of space science instruments, dubbed the Instruments for the Study of Space Storms (ISSS), is proposed for the Next Generation Small Satellite-1 (NEXTSat-1), which is scheduled for launch in May 2016. This paper describes the instrument designs and science missions of the ISSS. The ISSS configuration in NEXTSat-1 is as follows: the space radiation monitoring instruments consist of medium energy particle detector (MEPD) and high energy particle detector (HEPD); the space plasma instruments consist of a Langmuir probe (LP), a retarding potential analyzer (RPA), and an ion drift meter (IDM). The space radiation monitoring instruments (MEPD and HEPD) measure electrons and protons in parallel and perpendicular directions to the geomagnetic field in the sub-auroral region, and they have a minimum time resolution of 50 msec for locating the region of the particle interactions with whistler mode waves and electromagnetic ion cyclotron (EMIC) waves. The MEPD measures electrons and protons with energies of tens of keV to ~400 keV, and the HEPD measures electrons with energies of ~100 keV to > ~1 MeV and protons with energies of ~10 MeV. The space plasma instruments (LP, RPA, and IDM) observe irregularities in the low altitude ionosphere, and the results will be compared with the scintillations of the GPS signals. In particular, the LP is designed to have a sampling rate of 50 Hz in order to detect these small-scale irregularities.
        2.
        2014.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The next generation small satellite-1 (NEXTSat-1) program has been kicked off in 2012, and it will be launched in 2016 for the science missions and the verification of space core technologies. The payloads for these science missions are the Instrument for the Study of Space Storms (ISSS) and NIR Imaging Spectrometer for Star formation history (NISS). The ISSS and the NISS have been developed by Korea Advanced Institute of Science and Technology (KAIST) and Korea Astronomy and Space science Institute (KASI) respectively. The ISSS detects plasma densities and particle fluxes of 10 MeV energy range near the Earth and the NISS uses spectrometer. In order to verify the spacecraft core technologies in the space, the total of 7 space core technologies (SCT) will be applied to the NEXTSat-1 for space verification and those are under development. Thus, the operation modes for the ISSS and the NISS for space science missions and 7 SCTs for technology missions are analyzed for the required operation time during the NEXTSat-1’s mission life time of 2 years. In this paper, the operational concept of the NEXTSat-1’s science missions as well as the verification of space core technologies are presented considering constraints of volume, mass, and power after launch.
        3.
        2012.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        We developed a mass-memory chip by staking 1 Gbit double data rate 2 (DDR2) synchronous dynamic random access memory (SDRAM) memory core up to 4 Gbit storage for future satellite missions which require large storage for data collected during the mission execution. To investigate the resistance of the chip to the space radiation environment, we have performed heavy-ion-driven single event experiments using Heavy Ion Medical Accelerator in Chiba medium energy beam line. The radiation characteristics are presented for the DDR2 SDRAM (K4T1G164QE) fabricated in 56 nm technology. The statistical analyses and comparisons of the characteristics of chips fabricated with previous technologies are presented. The cross-section values for various single event categories were derived up to ~80 MeVcm2/mg. Our comparison of the DDR2 SDRAM, which was fabricated in 56 nm technology node, with previous technologies, implies that the increased degree of integration causes the memory chip to become vulnerable to single-event functional interrupt, but resistant to single-event latch-up.