검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Microplastics and nanoplastics (NMPs) are considered one of hazardous contaminants in marine ecosystems due to their toxic effects, such as reproduction disorder and oxidative stress, on marine organisms. Although water temperature is rising due to global climate change, little information on the toxicological interaction between NMPs and temperature is available. Therefore, in this study, we confirmed the toxicity of NMPs (polystyrene [PS] beads; 0.05- and 6-μm) on brackish water fleas (Diaphanosoma celebensis) depending on increased temperature (30°C and 35°C) at individual and molecular levels. In the chronic toxicity test, the group exposed to high temperatures showed an earlier first reproduction time compared to the normal temperatures group, but it was delayed by co-exposure to NMPs at 35°C. Notably, the total reproduction decreased significantly only after 0.05-μm PS beads exposure at 30°C. Interaction analysis showed that first reproduction time, modulation of the antioxidantrelated gene (GSTS1), heat shock gene (Hsp70), and ecdysteroid pathway-related genes (EcR_A, EcR_B, and CYP314A1) were closely related to temperature and PS beads size. These results indicate that microplastics have size-dependent toxicity, and their toxicity can be enhanced at high temperatures. In addition, higher temperatures and PS beads exposure may have negative effects on reproduction. This study suggests that various factors such as water temperature should be considered when evaluating the toxicity of microplastics in marine ecosystems, and provides an understanding of the complex toxic interaction between water temperature and microplastics for marine zooplankton.
        4,600원
        2.
        2023.11 구독 인증기관·개인회원 무료
        Copper hexacyanoferrate (Cu-HCF), which is a type of Prussian Blue analogue (PBA), possesses a specific lattice structure that allows it to selectively and effectively adsorb cesium with a high capacity. However, its powdery form presents difficulties in terms of recovery when introduced into aqueous environments, and its dispersion in water has the potential to impede sunlight penetration, possibly affecting aquatic ecosystems. To address this, sponge-type aluminum oxide, referred to as alumina foam (AF), was employed as a supporting material. The synthesis was achieved through a dip-coating method, involving the coating of aluminum oxide foam with copper oxide, followed by a reaction with potassium hexacyanoferrate (KHCF), resulting in the in-situ formation of Cu-HCF. Notably, Copper oxide remained chemically stable, which led to the application of 1, 3, 5-benzenetricarboxylic acid (H3BTC) to facilitate its conversion into Cu-HCF. This was necessary to ensure the proper transformation of copper oxide into Cu-HCF on the AF in the presence of KHCF. The synthesis of Cu-HCF from copper oxide using H3BTC was verified through X-ray diffraction (XRD) analysis. The manufactured adsorbent material, referred to as AF@CuHCF, was characterized using Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These analyses revealed the presence of the characteristic C≡N bond at 2,100 cm-1, confirming the existence of Cu-HCF within the AF@CuHCF, accounting for approximately 3.24% of its composition. AF@CuHCF exhibited a maximum adsorption capacity of 34.74 mg/g and demonstrated selective cesium adsorption even in the presence of competing ions such as Na+, K+, Mg2+, and Ca2+. Consequently, AF@CuHCF effectively validated its capabilities to selectively and efficiently adsorb cesium from Cs-contaminating wastewater.