검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2024.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The irradiated large components in a nuclear power plant must perform dismantling after performing a lot of training through mockup, but this mockup training is different the realistic environment such as a high radiation environment. Therefore, to develop a training system deployed in eXtended Reality (XR) that mimics a realistic environment, a suitable training and evaluation processes need to be developed. The target components for the training system select reactor, reactor internal and steam generator, and the training work of dismantling processes select dismantling, packaging and dismantling support work by reviewing the dismantling process of each component for XR application. By analyzing the detailed process of the selected dismantling process, Virtual Reality (VR) and Augmented Reality (AR) application processes will be developed. The basic contents of training system present purpose, goal, period, and evaluation for training and the training contents develop the basic, improvement and intensified course by level. The basic model for evaluation develop 3 stages (reaction, training, behavior) and evaluation process present detail training contents, target and evaluation method, evaluation criteria by level. Additionally, the developed training course and evaluation models will be useful for worker training in dismantling process of nuclear power plant.
        2.
        2022.10 서비스 종료(열람 제한)
        In operating or permanently shut down nuclear power plants which were built between 1970s and 1990s, asbestos was widely used for ceiling materials, wall materials, and gaskets. Furthermore, it was mainly treated as a heat-resistant material like insulation. In Kori Unit 1, radioactive asbestos was replaced or removed through maintenance and repair in the containment building during the operation period of about 40 years, but radioactive asbestos still remains that need to be partially dismantled. Generally, it is more difficult to handle because it belongs to two different waste categories, radioactive waste and hazardous waste. In addition, the risk increases further due to radioactivity with the asbestos hazards itself. Therefore, it is very important to accurately determine the amount of radioactive asbestos waste and to evaluate the treatment method and disposal reduction rate before the decommissioning is started. According to the Korean Waste Management Act, three methods are recommended for the asbestos (hazardous waste) treatment: landfill, solidification, and high-temperature melting. Landfill is commonly used in Korea and the United States while high-temperature melting and solidification are additionally recommended only in Korea. Considering the situation in Korea, landfill is not appropriate due to the limitations of landfill capacity and potential risks (hazards still remain). Therefore, the other two methods can be considered sufficiently in terms of safety, detoxification, and reduction rate. This paper evaluates the amount of radioactive asbestos waste at Kori Unit 1 based on the actual asbestos building material data (as of February 2022) of the Asbestos Management Comprehensive Information Network. Vitrification is considered as a sufficient alternative for treating radioactive asbestos waste. And, it is checked whether the vitrified waste through the high-temperature melting method, plasma torch, meets the requirements such as detoxification, compressive strength and leachability for storage and disposal stability. It is expected to be useful to prepare a radioactive mixed waste management standard and to reduce the disposal cost through the reduction of final waste.