검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        2.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To understand the characteristics of low-level clouds (CLs), environmental variables are composited on each CL using individual surface observations and six-hourly upper-air meteorologies around the globe. Individual CLs has its own distinct environmental conditions. Over the eastern subtropical and western North Pacific Ocean in JJA, stratocumulus (CL5) has a colder sea surface temperature (SST), stronger and lower inversion, and more low-level cloud amount (LCA) than the climatology whereas cumulus (CL12) has the opposite characteristics. Over the eastern subtropical Pacific, CL5 and CL12 are influenced by cold and warm advection within the PBL, respectively but have similar cold advection over the western North Pacific. This indicates that the fundamental physical process distinguishing CL5 and CL12 is not the horizontal temperature advection but the interaction with the underlying sea surface, i.e., the deepening-decoupling of PBL and the positive feedback between shortwave radiation and SST. Over the western North Pacific during JJA, skyobscuring fog (CL11), no low-level cloud (CL0), and fair weather stratus (CL6) are associated with anomalous warm advection, surface-based inversion, mean upward flow, and moist mid-troposphere with the strongest anomalies for CL11 followed by CL0. Over the western North Pacific during DJF, bad weather stratus (CL7) occurs in the warm front of the extratropical cyclone with anomalous upward flow while cumulonimbus (CL39) occurs on the rear side of the cold front with anomalous downward flow. Over the tropical oceans, CL7 has strong positive (negative) anomalies of temperature in the upper troposphere (PBL), relative humidity, and surface wind speed in association with the mesoscale convective system while CL12 has the opposite anomalies and CL39 is in between.
        6,300원
        3.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To understand the genesis of tropical cyclones (TC), we computed TC genesis probability (GPr) by partitioning a highly localized genesis frequency (GFq) into nearby grid boxes in proportion to the spatial coherence of genesis potential index (GPI). From the analysis of TCs simulated by the Seoul National University Atmosphere Model Version 0 and the observed TCs, it was shown that GPr reasonably converges to GFq when averaged over a long-term period in a decent grid size, supporting its validity as a proxy representing a true TC GPr. The composite anomalies of the gridded GPr in association with the Asia summer monsoon, El Nino-Southern Oscillation (ENSO), and the Madden-Julian Oscillation (MJO) are much less noisy than those of GFq, and consequently are better interpretable. In summary, GPr converges to GFq, varies more smoothly than GFq, represents the spatiotemporal variations of GFq better than GPI, and depicts GFq with greater spatial details than other spatially smoothed GFqs.
        4,200원