The present study investigates the impact of freeze–thaw deterioration on the electrical properties and electric-heating capabilities of cement mortar incorporating with carbon nanotubes (CNT) and carbon fibers (CF). Mortar samples, containing 0.5 wt.% CNT and 0.1 wt.% CF relative to the mass of cement, were prepared and subjected to freeze–thaw tests for up to 300 cycles. The electrical properties and electric-heating capability were evaluated every 30 freeze–thaw cycles, and the physicochemical characteristics of the samples were analyzed using X-ray diffraction and mercury intrusion porosimetry. The results indicate a decline in both electrical conductivity and heat-generation capability as the freeze–thaw cycles progress. Furthermore, changes in the pore structure of the mortar samples during the freeze–thaw cycles contributed to damage in the conductive network formed by CNT and CF, resulting in decreased electrical conductivity and heat-generation capabilities of the mortar samples.
In the present study, the effects of electrodes type (copper, steel or CFRP) and design (plate or mesh) on electrical stability of conductive cement as exposed to various weathering conditions were investigated. To fabricate these composites, multiwalled carbon nanotube and carbon fiber were added to the cement composites by 0.6 and 0.4% by cement mass. Seven different types of electrodes were embedded to the samples, and their electrical stability was examined during the curing period. In addition, the fabricated samples were exposed to water ingress and cyclic heating conditions. Then, the compressive strength of the samples was evaluated to observe the interfacial bonding between the cement paste and electrodes. Based on the experimental results, it was found that the samples showed different electrical stability even their mix proportion was same. Thus, it can be concluded that the type and design of the electrodes are important in measuring the electrical properties of the conductive cement composites. Specifically, an improved electrical stability of electrodes is required when they are exposed to various weathering conditions.