검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2025.09 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        The prediction of satisfactory orthodontic treatment outcomes can be very challenging owing to the subjectivity of orthodontists’ judgment, along with the inherent difficulties when considering numerous factors. Therefore, this study introduced a deep learning-based method for predicting orthodontic treatment outcomes based on the image-to-image translation of dental radiographs using the Pix2Pix model. This proposed method addresses the aforementioned issues using a Pix2Pix-based prediction model constructed from adversarial deep learning. Patient datasets and prediction models were separated and developed for extraction and non-extraction treatments, respectively. The patients’ radiographs were pre-processed and standardized for training, testing, and applying the Pix2Pix models by uniformly adjusting the degree of blackness for the region of interest. A comparison of actual with Pix2Pix-predicted images revealed high accuracy, with correlation coefficients of 0.8767 for extraction orthodontic treatments and 0.8686 for non-extraction treatments. The proposed method establishes a robust clinical and practical framework for digital dentistry, offering both quantitative and qualitative insights for orthodontists and patients.
        4,000원