검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2019.12 구독 인증기관 무료, 개인회원 유료
        Osteocalcin is the most abundant non-collagenous protein produced in bone. It has traditionally been regarded as a marker of bone turnover and is thought to act in the bone matrix to regulate mineralization. However, emerging knowledge regarding osteocalcin has expanded to include functions in energy metabolism, fertilization, and regulation of cognition. Fully carboxylated osteocalcin binds to hydroxyapatite, thereby modulating bone turnover, whereas undercarboxylated osteocalcin in the circulation binds to osteocalcin-sensing receptors and acts as a hormone that affects multiple physiological aspects. In this review, we summarize the current knowledge regarding the hormonal actions of osteocalcin in various organs and potential cellular downstream signaling pathway that may be involved.
        4,000원
        2.
        2016.03 구독 인증기관 무료, 개인회원 유료
        Receptor activator of nuclear factor-κB ligand (RANKL) is an osteoblast/stromal cell-derived essential factor for osteoclastogenesis. During endochondral bone formation, hypertrophic chondrocytes calcify cartilage matrix that is subsequently resorbed by osteoclasts in order to be replaced by new bone. Hypoxia-induced upregulation of RANKL expression has been previously demonstrated in an in vitro system using osteoblasts; however, the involved mechanism remains unclear in chondrocytes. In the present study, we investigated whether hypoxia regulates RANKL expression in ATDC5 cells, a murine chondrogenic cell line, and hypoxiainducible factor-1α (HIF-1α) mediates hypoxia-induced RANKL expression by transactivating the RANKL promoter. The expression levels of RANKL mRNA and protein, as well as HIF-1α protein, were significantly increased in ATDC5 cells under hypoxic condition. Constitutively active HIF-1α alone significantly increased the levels of RANKL expression under normoxic conditions, whereas dominant negative HIF-1α reduced hypoxia-induced RANKL expression. HIF-1α increased RANKL promoter reporter activity in a HIF-1α binding element-dependent manner in ATDC5 cells. Hypoxia-induced RANKL levels were much higher in differentiated ATDC5 cells, as compared to proliferating ATDC5 cells. These results suggested that under hypoxic conditions, HIF-1α mediates induction of RANKL expression in chondrocytes; in addition, hypoxia plays a role in osteoclastogenesis during endochondral bone formation, at least in part, through the induction of RANKL expression in hypertrophic chondrocytes.
        4,000원
        3.
        2015.03 구독 인증기관 무료, 개인회원 유료
        Osteocytes may function as mechanotransducers by regulating local osteoclastogenesis. Reduced availability of oxygen, i.e. hypoxia, could occur during disuse, bone development, and fracture. Receptor activator of nuclear factor-κB ligand (RANKL) is an osteoblast/stromal cell derived essential factor for osteoclastogenesis. The hypoxia induced osteoclastogenesis via increased RANKL expression in osteoblasts was demonstrated. Hypoxic regulation of gene expression generally involves activation of the hypoxia-inducible factor (HIF) transcription pathway. In the present study, we investigated whether hypoxia regulates RANKL expression in murine osteocytes and HIF-1α mediates hypoxia-induced RANKL expression by transactivating RANKL promoter, to elucidate the role of osteocyte in osteoclastogenesis in the context of hypoxic condition. The expression levels of RANKL mRNA and protein, as well as hypoxia inducible factor-1α (HIF-1α) protein, were significantly increased in hypoxic condition in MLO-Y4s. Constitutively active HIF-1α alone significantly increased the levels of RANKL expression in MLO-Y4s under normoxic conditions, whereas dominant negative HIF-1α blocked hypoxia-induced RANKL expression. To further explore to find if HIF-1α directly regulates RANKL transcription, a luciferase reporter assay was conducted. Hypoxia significantly increased RANKL promoter activity, whereas mutations of putative HIF-1α binding elements in RANKL promoter prevented this hypoxia-induced RANKL promoter activity in MLO-Y4s. These results suggest that HIF-1α mediates hypoxia-induced up-regulation of RANKL expression, and that in osteocytes of mechanically unloaded bone, hypoxia enhances osteoclastogenesis, at least in part, via an increased RANKL expression in osteocytes.
        4,000원
        4.
        2013.09 구독 인증기관 무료, 개인회원 유료
        Tumor necrosis factor alpha (TNFα) is a multifunctional inflammatory cytokine that regulates various cellular and bio-logical processes. Increased levels of TNFα have been im-plicated in a number of human diseases including diabetes and arthritis. Sympathetic nervous system stimulation via the beta2-adrenergic receptor (β2AR) in osteoblasts suppresses osteogenic activity. We previously reported that TNFα up- regulates β2AR expression in murine osteoblastic cells and that this modulation is associated with TNFα inhibition of osteoblast differentiation. In our present study, we explored whether TNFα induces β2AR expression in human osteo-blasts and then identified the downstream signaling path-way. Our results indicated that β2AR expression was increa-sed in Saos-2 and C2C12 cells by TNFα treatment, and that this increase was blocked by the inhibition of NF-κB acti-vation. Chromatin immunoprecipitation and luciferase reporter assay results indicated that NF-κB directly binds to its cog-nate elements on the β2AR promoter and thereby stimulates β2AR expression. These findings suggest that the activation of TNFα signaling in osteoblastic cells leads to an upregu-lation of β2AR and also that TNFα induces β2AR exp-ression in an NF-κB-dependent manner.
        4,000원
        5.
        2011.12 구독 인증기관 무료, 개인회원 유료
        Tumor necrosis factor alpha (TNFα) is a multifunctional cytokine that is elevated in inflammatory diseases such as atherosclerosis, diabetes and rheumatoid arthritis. Recent evidence has suggested that β2 adrenergic receptor(β2AR) activation in osteoblasts suppresses osteogenic activity. In the present study, we explored whether TNFα modulates βAR expression in osteoblastic cells and whether this regulation is associated with the inhibition of osteoblast differentiation by TNFα. In the experiments, we used C2C12 cells, MC3T3- E1 cells and primary cultured mouse bone marrow stromal cells. Among the three subtypes of βAR, β2 and β3AR were found in our analysis to be upregulated by TNFα. Moreover, isoproterenol-induced cAMP production was observed to be significantly enhanced in TNFα-primed C2C12 cells, indicating that TNFα enhances β2AR signaling in osteoblasts. TNFα was further found in C2C12 cells to suppress bone morphogenetic protein 2-induced alkaline phosphatase (ALP) activity and the expression of osteogenic marker genes including Runx2, ALP and osteocalcin. Propranolol, a β2AR antagonist, attenuated this TNFα suppression of osteogenic differentiation. TNFα increased the expression of receptor activator of NF-κB ligand (RANKL), an essential osteoclastogenic factor, in C2C12 cells which was again blocked by propranolol. In summary, our data show that TNFα increases β2AR expression in osteoblasts and that a blockade of β2AR attenuates the suppression of osteogenic differentiation and stimulation of RANKL expression by TNFα. These findings imply that a crosstalk between TNFα and β2AR signaling pathways might occur in osteoblasts to modulate their function.
        4,000원