Oral viridans streptococci are recognized as one of the etiological agents of a variety of infectious diseases such as dental caries and infective endocarditis. Although antimicrobial susceptibility tests for these fastidious bacterial species are now established and standardized, a comparison between the broth microdilution and broth macrodilution tests has not previously been performed. This comparison was performed in the present study using the tests adopted by the Clinical and Laboratory Standards Institute (CLSI) and seven clinical isolates of oral viridans streptococcal strains. A modified broth macrodilution susceptibility test method was also included in this analysis, in which the media was not supplemented with horse blood. The susceptibility interpretation category agreements were measured at 83% (broth microdilution versus broth macrodilution) and 71% (broth microdilution versus modified broth macrodilution). The interpretation category agreement between the broth macrodilution and modified broth macrodilution tests was also 83%. These data indicate that the interpretation of antibiotic susceptibility test results for oral viridans streptococci are influenced by the methods used.
LAR-RPTP (leukocyte common antigen-related receptor protein tyrosine phosphatase) is an important regulator in the nervous system, but little is known about its expression pattern in rat trigeminal ganglion (TG) neurons. To examine whether LAR-RPTP is expressed in the TG in the current study, we sacrificed rats at 0, 7, 10 and 56 day postpartum (dpp) and a second group of rats at 3 and 5 days after an experimental tooth extraction as a TG injury model. RT-PCR was then used to determine the level of LAR-RPTP expression in the TG and immunohistology was employed to detect the subcellular localization of the protein. The mRNA expression of LAR-RPTP during the developmental stages in the TG was found to gradually increase. After experimental tooth extraction however, these transcript levels had significantly decreased at three days. LAR-RPTP protein signals in the TG were found to be cytoplasmic in the normal animals but interestingly, at five days after an experimental tooth extraction, these signals were rare. These results indicate that LAR-RPTP may be regulated during both the developmental as well as regenerative processes that take place in the TG. This further suggests that LAR-RPTP is not only involved in primary axonogenesis but possibly also in the molecular control of axons during TG repair.
Tumor necrosis factor alpha (TNFα) is a multifunctional cytokine that is elevated in inflammatory diseases such as atherosclerosis, diabetes and rheumatoid arthritis. Recent evidence has suggested that β2 adrenergic receptor(β2AR) activation in osteoblasts suppresses osteogenic activity. In the present study, we explored whether TNFα modulates βAR expression in osteoblastic cells and whether this regulation is associated with the inhibition of osteoblast differentiation by TNFα. In the experiments, we used C2C12 cells, MC3T3- E1 cells and primary cultured mouse bone marrow stromal cells. Among the three subtypes of βAR, β2 and β3AR were found in our analysis to be upregulated by TNFα. Moreover, isoproterenol-induced cAMP production was observed to be significantly enhanced in TNFα-primed C2C12 cells, indicating that TNFα enhances β2AR signaling in osteoblasts. TNFα was further found in C2C12 cells to suppress bone morphogenetic protein 2-induced alkaline phosphatase (ALP) activity and the expression of osteogenic marker genes including Runx2, ALP and osteocalcin. Propranolol, a β2AR antagonist, attenuated this TNFα suppression of osteogenic differentiation. TNFα increased the expression of receptor activator of NF-κB ligand (RANKL), an essential osteoclastogenic factor, in C2C12 cells which was again blocked by propranolol. In summary, our data show that TNFα increases β2AR expression in osteoblasts and that a blockade of β2AR attenuates the suppression of osteogenic differentiation and stimulation of RANKL expression by TNFα. These findings imply that a crosstalk between TNFα and β2AR signaling pathways might occur in osteoblasts to modulate their function.
MicroRNAs (miRNAs) are small non-coding RNAs that mediate gene expression at the post-transcriptional level by degrading or repressing targeted mRNAs. These molecules are about 21-25 nucleotides in length and exert their effects by binding to partially complementary sites in mRNAs, predominantly in the 3'-untranslated region (3'-UTR). Recent evidence has demonstrated that miRNAs can function as oncogenes or tumor suppressors through the modulation of multiple oncogenic cellular processes in cancer development, including initiation, cell proliferation, apoptosis, invasion and metastasis. In our present study, we examined the expression profile of miRNAs related to oral cancer cell growth inhibition using normal human oral keratinocytes (NHOK) and YD-38 human oral cancer cells. By miRNA microassay analysis, 40 and 31 miRNAs among the 1,769 examined were found to be up- and down-regulated in YD-38 cells compared with NHOK cells, respectively. Using qRT-PCR analysis, the expression levels of miR-30a and miR-1246 were found to be increased in YD-38 cells compared with NHOK cells, whereas miR-203 and miR-125a were observed to be decreased. Importantly, the overexpression of miR-203 and miR-125a significantly inhibited the growth of YD-38 cells. This finding and the microarray data indicate the involvement of specific miRNAs in the development and progression of oral cancer.
Periodontitis is an inflammatory disorder of the periodontium, characterized by destruction of the tooth supporting tissues including alveolar bone and mediated by various pro-inflammatory mediators. Here, we demonstrated that HP08-0106, composed of four crude drugs-Gardenia jasminoides Grandiflora, Angelica gigas Nakai, Rehmannia glutinosa, and Schizonepeta tenuifolia in a weight ratio of 2:2:1:2, perturbs inflammatory responses, osteoclast formation in LPS-induced RAW 264.7 cells and alveolar bone resorption in ligature-induced periodontitis. HP08-0106 decreased the protein level of iNOS and COX2 as well as the secreted level of IL-1β, indicating that HP08-0106 has antiinflammatory effects. HP08-0106 also inhibited the expression of genes associated with osteoclastogenesis including c-Fos, MMP-9 and TRAP. Moreover, HP08-0106 exhibited a protective effect from alveolar bone loss in ligature-induced periodontitis animal models. Our results strongly suggest that HP08-0106 represent an important therapeutic tool to treat inflammatory disorders associated with bone loss such as periodontitis.
Matrix metalloproteinases (MMPs) have been implicated in tissue development and re-modeling. Dynamic morphological changes of tooth germs reflect involvement of these enzymes during odontogenesis. The present study was performed to investigate expression and localization of MMP-2 and MMP-9, which have been known to have type IV collagenase activities, in rat tooth germs at different developmental stages. MMP-2 expression was increased gradually in the tooth germs from cap to crown staged germs at both transcription and translation levels. The localization of this molecule was detected in secretory ameloblasts and preameloblasts. The strong immunoreactivities were occasionally seen along the basement membrane between ameloblasts (or preameloblasts) and odontoblasts (preodontoblasts). However, weak reactivity was detected in odontoblasts and reduced enamel epithelium. The level of MMP-9 expression in the tooth germs was higher in cap stage than in crown staged germs at both transcription and translation levels. They were strongly expressed in both ameloblasts and odontoblasts. Even though reduced enamel epithelium after enamel formation and inner enamel epithelium at the cap stage exhibited weak reactivity, strong reactivity was detected in dental follicles and perifollicular tissues surrounding cap staged germs. These results suggested that MMP-2 may involve degradation of the basement membrane during hard tissue formation, whereas MMP-9 might be involved in remodeling of follicular tissues.