In order to understand biological phenomena accurately, single molecule techniques using a physical research approach to molecular interactions have been developed, and are now widely being used to study complex biological processes. In this review, we discuss some of the single molecule methods which are composed of two major parts: single molecule spectroscopy and manipulation. In particular, we explain how these techniques work and introduce the current research which uses them. Finally, we present the oral biology research using the single molecule methods.
Codium fragile (Suringar) Hariot is an edible green seaweed that belong to the Codiaceae family and has been used in Oriental medicine for the treatment of enterobiasis, dropsy, and dysuria. Methanol extract of codium fragile has anti-oxidant, anti-inflammatory and anti-cancer properties, although the anti-cancer effect on oral cancer has not yet been reported. In this study, we investigated the anti-cancer activity and the mechanism of cell death by methanol extracts of Codium fragile (MeCF) on human FaDu hypopharyngeal squamous carcinoma cells. Our data showed that MeCF inhibits cell viability in a dose-dependent manner, and markedly induced apoptosis, as determined by the MTT assay, Live/Dead assay, and DAPI stain. In addition, MeCF induced the proteolytic cleavage of procaspase -3, -7, -9 and poly(ADP-ribose) polymerase(PARP), and upregulated or downregulated the expression of mitochondrial-apoptosis factor, Bax(pro-apoptotic factor), and Bcl-2(anti-apoptotic factor), . Futhermore, MeCF induced a cell cycle arrest at the G1/S phase through suppressing the expression of the cell cycle cascade proteins, p21, CDK4, CyclinD1, and phospho-Rb. Taken together, these results indicated that MeCF inhibits cell growth, and this inhibition is mediated by caspase- and mitochondrial-dependent apoptotic pathways through cell cycle arrest at the G1/S phase in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, methanol extracts of Codium fragile can be provided as a novel chemotherapeutic drug due to its growth inhibition effects and induction of apoptosis in human oral cancer cells.
Oral squamous cell carcinoma (OSCC) is the most common type of oral malignancy. Numerous therapies have been proposed for its cure. Research is continually being conducted to develop new forms of treatment as current therapies are associated with numerous side-effects. Luteolin, a common dietary flavonoid, has been demonstrated to possess strong anti-cancer activity against various human cancer cell lines. Nevertheless, research into luteolin-based anticancer activity against oral cancer remains scarce. Thus, the objective of this study was to assess the effect of luteolin as an anti-cancer agent. After treatment with luteolin, Ca9-22 and CAL-27 oral cancer cells showed condensed nuclei and enhanced apoptotic rate with evidence of mitochondria-mediated apoptosis. Epithelial-mesenchymal transition (EMT) is closely related to tumor migration and invasion. Luteolin suppressed cancer cell invasion and migration in the current study. Elevated expression of E-cadherin, an adherens junction protein, was evident in both cell lines after luteolin treatment. Luteolin also significantly inhibited transcription factors (i.e., N-cadherin, Slug, Snail, Twist, and ZEB-1) that regulated expression of tumor suppressors such as E-cadherin based on Western blot analysis and quantitative PCR. Thus, luteolin could induce mitochondrial apoptosis and inhibit cancer cell invasion and migration by suppressing EMT-induced transcription factors.
The mesenchymal stem cells (MSCs) that reside in dental tissues hold a great potential for future applications in regenerative dentistry. In this study, we used human dental pulp cells, isolated from the molars (DPCs), in order to establish the organoid culture. DPCs were established after growing pulp cells in an MSC expansion media (MSC-EM). DPCs were subjected to organoid growth media (OGM) in comparison with human dental pulp stem cells (DPSCs). Inside the extracellular matrix in the OGM, the DPCs and DPSCs readily formed vessel-like structures, which were not observed in the MSC-EM. Immunocytochemistry analysis and flow cytometry analysis showed the elevated expression of CD31 in the DPCs and DPSCs cultured in the OGM. These results suggest endothelial cell-prone differentiation of the DPCs and DPSCs in organoid culture condition.
Nonthermal atmospheric plasma has been studied for its many biomedical effects, such as tooth bleaching, wound healing, and coagulation. In this study, the effects of dentinal tubules occlusion were investigated using fluoride-carboxymethyl cellulose (F-CMC) gel, nano-sized hydroxyapatite (n-HA), and nonthermal atmospheric plasma. Human dentin specimens were divided to 5 groups (group C, HA, HAF, HAP, and HAFP). Group HA was treated with n-HA, group HAF was treated with n-HA after a F-CMC gel application, group HAP was treated with n-HA after a plasma treatment and group HAFP was treated with n-HA after a plasma and F-CMC gel treatment. The occlusion of dentinal tubules was investigated using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS), which shows Ca/P ratio. In the EDS results, a higher Ca/P ratio was shown in the groups including n-HA than in the control group. The specimens of group HAP and HAFP had a higher Ca/P ratio in retentivity. In the SEM results, there was not a significant difference in the amount of times applied. Therefore, this study suggests F-CMC gel and n-HA treatment using nonthermal atmospheric plasma will be a new treatment method for decreasing hypersensitivity.
The investigation of the embryonic development of the cerebellum has a long history. The postnatal normal development of the cerebellum in rodents and other animals became a popular topic for morphological investigations nearly a century ago. However, surprisingly, only a few studies are available regarding the prenatal normal development of the rodent cerebellum, especially in guinea pigs. Cell proliferation is essential for the development of the nervous system. The assessment of cell proliferation can be achieved by using various methods. In this study, we investigated the cell proliferation of the cerebellar cortex in guinea pigs at different stages of pregnancy and in postnatal life. Fetuses were obtained by cesarean section at 50 or 60 days of gestation (dg). Immunohistochemistry was performed with proliferating cell nuclear antigen (PCNA) antibody in the cerebellum. Strong PCNA immunoreactivity was observed in the external granular layer (EGL), which is a neurogenic zone in the cerebellum. The proportion of PCNA-IR cells was greater at 1 week than at 60 dg in lobule I, but not lobule VIII. After 50 dg, the width of the EGL continued to decline until 1 week, due to the maturation of the EGL cells. These results demonstrate the pattern of PCNA immunoreactivity in the developing cerebellum of guinea pigs. This serves as a guideline to study abnormal cerebellum development.
Understanding the classification of malocclusion is a crucial issue in Orthodontics. It can also help us to diagnose, treat, and understand malocclusion to establish a standard for definite class of patients. Principal component analysis (PCA) and k-means algorithms have been emerging as data analytic methods for cephalometric measurements, due to their intuitive concepts and application potentials. This study analyzed the macro- and meso-scale classification structure and feature basis vectors of 1020 (415 male, 605 female; mean age, 25 years) orthodontic patients using statistical preprocessing, PCA, random matrix theory (RMT) and k-means algorithms. RMT results show that 7 principal components (PCs) are significant standard in the extraction of features. Using k-means algorithms, 3 and 6 clusters were identified and the axes of PC1~3 were determined to be significant for patient classification. Macro-scale classification denotes skeletal Class I, II, III and PC1 means anteroposterior discrepancy of the maxilla and mandible and mandibular position. PC2 and PC3 means vertical pattern and maxillary position respectively; they played significant roles in the meso-scale classification. In conclusion, the typical patient profile (TPP) of each class showed that the data-based classification corresponds with the clinical classification of orthodontic patients. This data-based study can provide insight into the development of new diagnostic classifications.