간행물

International Journal of Oral Biology KCI 등재후보

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol. 34 No. 4 (2009년 12월) 7

2.
2009.12 구독 인증기관 무료, 개인회원 유료
Human mesenchymal stem cell (hMSCs) isolated from human adult bone marrow have self-renewal capacity and can differentiate into multiple cell types in vitro and in vivo. A number of studies have now demonstrated that MSCs can differentiate into various neuronal populations. Due to their autologous characteristics, replacement therapy using MSCs is considered to be safe and does not involve immunological complications. The basic helix-loop-helix (bHLH) transcription factor Olig2 is necessary for the specification of both oligodendrocytes and motor neurons during vertebrate embryogenesis. To develop an efficient method for inducing neuronal differentiation from MSCs, we attempted to optimize the culture conditions and combination with Olig2 gene overexpression. We observed neuron-like morphological changes in the hMSCs under these induction conditions and examined neuronal marker expression in these cells by RTPCR and immunocytochemistry. Our data demonstrate that the combination of Olig2 overexpression and neuron-specific conditioned medium facilitates the neuronal differentiation of hMSCs in vitro. These results will advance the development of an efficient stem cell-mediated cell therapy for human neurodegenerative diseases.
4,000원
3.
2009.12 구독 인증기관 무료, 개인회원 유료
This study examined the effects of red light generated from a light emitting diode (LED) upon proliferation and mitochondrial stress in human gingival fibroblasts (hGFs). Cells were exposed to LED-generated red light at a clinically relevant intensity and distance with a 610-630 nm wavelength for various times (0-48 min). At different exposure times, cells were processed for the analysis of succinate dehydrogenase (SDH) activity, proliferation, mitochondrial membrane potential (MMP) and cytotoxicity. Cell cycle progression was also investigated by flow cytometry after staining with propidium iodide. Red light exposure was found to inhibit SDH activity and DNA synthesis in hGFs in a time-dependent manner. Light exposure also reduced the MMP levels in these cells and this was closely associated with a G0/G1 arrest. In contrast, exposure of hGFs to red light for 48 min led to a dramatic loss of MMP with an attendant increase in cytotoxicity. These findings demonstrate that LED-generated red light may cause mitochondrial stress and growth inhibition in hGFs during tooth whitening therapy, depending on the length of the exposure.
4,000원
4.
2009.12 구독 인증기관 무료, 개인회원 유료
Somatostatin (SST) is a known neuromodulator of the central nervous system. The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) receives many thinmyelinated Að-fiber and unmyelinated C primary afferent fibers and is involved in nociceptive processing. Many studies have demonstrated that SST plays a pivotal role in pain modulation in the spinal cord. However, little is yet known about the direct effects of SST on the SG neurons of the Vc in adult mice. In our present study, we investigated the direct membrane effects of SST and a type 2 SST receptor agonist, seglitide (SEG), on the SG neurons of the Vc using a gramicidin-perforated current clamp in adult mice. The majority (53%, n = 27/51) of the adult SG neurons were hyperpolarized by SST (300 nM) but no differences were found in the hyperpolarization response rate between males and females. When SST was applied successively, the second response was smaller (76±9.5%, n=19), suggesting that SST receptors are desensitized by repeated application. SST-induced hyperpolarization was also maintained under conditions where presynaptic events were blocked (75±1.0%, n=5), suggesting that this neuromodulator exerts direct effects upon postsynaptic SG neurons. SEG was further found to induce membrane hyperpolarization of the SG neurons of the Vc. These results collectively demonstrate that SST inhibits the SG neuronal activities of the Vc in adult mice with no gender bias, and that these effects are mediated via a type 2 SST receptor, suggesting that this is a potential target for orofacial pain modulation.
4,000원
5.
2009.12 구독 인증기관 무료, 개인회원 유료
This study investigated whether orthodontic force influences the production of osteoprotegerin (OPG) and receptor activator of nuclear factor-kappa B ligand (RANKL) in vivo, both of which are affected by cortical activation. Mechanical force was applied to the maxillary premolars of orthodontic patients by fitting the transpalatal arch prior to cortical activation of the gingival tissue. Gingival crevicular fluid (GCF) samples were then collected from each patient using paper strips before and after 1, 3, 7 or 14 days of treatment. The OPG and RANKL levels in the GCF were determined by enzyme-linked immunosorbent assays. The levels of OPG were significantly increased after 1 day of fitting the appliance and decreased to basal levels at 3 days after fitting. In contrast, the RANKL levels were dramatically decreased at 1 day after fitting, but recovered to those of the untreated control at 3 days after the force application. The force-mediated changes in the OPG and RANKL levels of the GCF were unaffected by cortical activation during these experimental periods. Collectively, these results suggest that an acute and severe change between the OPG and RANKL levels plays an important role in stimulating the cellular responses required for alveolar bone remodeling by orthodontic treatment.
4,000원
6.
2009.12 구독 인증기관 무료, 개인회원 유료
The mechanisms underlying the actions of the antioxidants upon reactive oxygen species (ROS) generation by NADPH oxidase complex have remained uncertain. In this study, we investigated NADPH oxidase activity and the role of antioxidant enzymes upon the generation of ROS during hypoxic stress. ROS generation was found to increase in the mouse kidney under hypoxic stress in a time-dependent manner. Moreover, we found in MCT cells that hypoxia-induced hydrogen peroxide production was decreased by NAC pretreatment. We further analyzed HIF-1α, PHD2 and VHL expression in the NAC-pretreated MCT cells and assessed the response of antioxidant enzymes at the transcriptional and translational levels. SOD3 and Prdx2 were significantly increased during hypoxia in the mouse kidney. We also confirmed in hypoxic Prdx2-l- and SOD3 transgenic mice that erythropoietin (EPO) is transcriptionally regulated by HIF-1α. In addition, although EPO protein was found to be expressed in a HIF-1α independent manner in three mouse lines, its activity differed markedly between normal and Prdx2-l-/SOD3 transgenic mice during hypoxic stress. In conclusion, our current results indicate that NADPH oxidase-mediated ROS generation is associated with hypoxic stress in the mouse kidney and that SOD3 and Prdx2 cooperate to regulate cellular redox reactions during hypoxia.
4,000원
7.
2009.12 구독 인증기관 무료, 개인회원 유료
Medial vestibular nucleus (MVN) neurons are involved in the reflex control of the head and eyes, and in the recovery of vestibular function after the formation of peripheral vestibular lesions. In our present study, whole cell patch clamp recordings were carried out on MVN neurons in brainstem slices from neonatal rats to investigate the actions of a group I metabotropic glutamate receptor (mGluR) agonist upon synaptic transmission and ionic currents. Application of the mGluR I agonist (S)-3,5- dihydroxyphenylglycine (DHPG) increased the frequency of miniature inhibitory postsynaptic currents (mIPSCs) but had no effect upon amplitude distributions. To then identify which of mGluR subtypes is responsible for the actions of DHPG in the MVN, we employed two novel subtype selective antagonists. (S)-(+)--amino-a-methylbenzeneacetic acid (LY367385) is a potent competitive antagonist that is selective for mGluR1, whereas 2-methyl-6-(phenylethynyl)-pyridine (MPEP) is a potent noncompetitive antagonist of mGluR5. Both LY367385 and MPEP antagonized the DHPG-induced increase of mIPSCs, with the former being more potent. DHPG was also found to induce an inward current, which can be enhanced under depolarized conditions. This DHPG-induced current was reduced by both LY367385 and MPEP. The DHPG-induced inward current was also suppressed by the PLC blocker U-73122, the IP₃ receptor antagonist 2-APB, and following the depletion of the intracellular Cα2+ pool by thapsigargin. These data suggest that the DHPG-induced inward current may be mainly regulated by the intracellular Cα2+ store via the PLC-IP3 pathway. In conclusion, mGluR I, via pre- and postsynaptic actions, may modulate the excitability of the MVN neurons.
4,000원