간행물

International Journal of Oral Biology KCI 등재후보

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol. 42 No. 2 (2017년 6월) 6

1.
2017.06 구독 인증기관 무료, 개인회원 유료
Metformin (1,1-dimethylbiguanide hydrochloride), derived from French lilac (Galega officinalis), is a first-line anti-diabetic drug prescribed for patients with type 2 diabetes. However, the role of metformin in odontoblastic cell differentiation is still unclear. This study therefore undertook to examine the effect of metformin on regulating odontoblast differentiation in MDPC-23 mouse odontoblastic cells derived from mouse dental papilla cells. As compared to controls, metformin significantly accelerated the mineralization, significantly increased and accelerated the expressions of ALP and Col I mRNAs, and significantly increased the accelerated expressions of DSPP and DMP-1 mRNAs, during differentiation of MDPC-23 cells. There was no alteration in cell proliferation of MDPC-23 cells, on exposure to metformin. These results suggest that the effect of metformin on MDPC-23 mouse odontoblastic cells derived from mouse dental papilla cells, facilitates the odontoblast differentiation and mineralization, without altering the cell proliferation.
4,000원
2.
2017.06 구독 인증기관 무료, 개인회원 유료
Anthriscus sylvestris (L.) Hoffm. is a perennial herb found widely distributed in various regions of Korea, Europe, and New Zealand. The root of A. sylvestris have been extensively used in the treatment for antitussive, antipyretic, cough remedy in Oriental medicine, but the physiologically active function of the leaf of A. sylvestris is as yet unknown. In this study, we investigated the anti-cancer activity and the mechanism of cell death of water extracts of leaf of Anthriscus sylvestris (WELAS), on human FaDu hypopharyngeal squamous carcinoma cells. Our data showed that WELAS treatment inhibited cell viability in a concentration- and time-dependent manner. In addition, the treatment of WELAS markedly induced apoptosis in FaDu cells, as determined by the viability assay, DAPI stain and FACS analysis. WELAS also increased the proteolytic cleavage of procaspase-3, -9 and PARP (poly(ADP-ribose) polymerase). In addition, exposure to WELAS decreased the expression of Bcl-2 (an anti-apoptotic factor), but increased the expression of Bax (a pro-apoptotic factor), suggesting that mitochondria-dependent apoptotic pathways are mediated in WELAS-induced apoptosis. Taken together, these results indicate that water extracts of leaf of A. sylvestris inhibits cell growth and induces apoptosis via the mitochondrial-dependent apoptotic pathway in FaDu human hypopharyngeal squamous carcinoma cells. Therefore, we propose that the water extracts of leaf of A. sylvestris is a novel chemotherapeutic drug, having growth inhibitory properties and induction of apoptosis in human oral cancer cells.
4,000원
3.
2017.06 구독 인증기관 무료, 개인회원 유료
Recent studies indicate that mitochondria are an important source of reactive oxygen species (ROS) in the spinal dorsal horn. In our previous study, application of malate, a mitochondrial electron transport complex I substrate, induced a membrane depolarization, which was inhibited by pretreatment with ROS scavengers. In the present study, we used patch clamp recording in the substantia geletinosa (SG) neurons of spinal slices, to investigate the cellular mechanism of mitochondrial ROS on neuronal excitability. DNQX (an AMPA receptor antagonist) and AP5 (an NMDA receptor antagonist) decreased the malate-induced depolarization. In an external calcium free solution and addition of tetrodotoxin (TTX) for blockade of synaptic transmission, the malateinduced depolarization remained unchanged. In the presence of DNQX, AP5 and AP3 (a groupⅠ metabotropic glutamate receptor (mGluR) antagonist), glutamate depolarized the membrane potential, which was suppressed by PBN. However, oligomycin (a mitochondrial ATP synthase inhibitor) or PPADS (a P2 receptor inhibitor) did not affect the substrates-induced depolarization. These results suggest that mitochondrial substrate-induced ROS in SG neuron directly acts on the postsynaptic neuron, therefore increasing the ion influx via glutamate receptors.
4,000원
4.
2017.06 구독 인증기관 무료, 개인회원 유료
Selecting an appropriate antigen with optimal immunogenicity and physicochemical properties is a pivotal factor to develop a protein based subunit vaccine. Despite rapid progress in modern molecular cloning and recombinant protein technology, there remains a huge challenge for purifying and using protein antigens rich in hydrophobic domains, such as membrane associated proteins. To overcome current limitations using hydrophobic proteins as vaccine antigens, we adopted in silico analyses which included bioinformatic prediction and sequence-based protein 3D structure modeling, to develop a novel periodontitis subunit vaccine against the outer membrane protein FomA of Fusobacterium nucleatum. To generate an optimal antigen candidate, we predicted hydrophilicity and B cell epitope parameter by querying to web-based databases, and designed a truncated FomA (tFomA) candidate with better solubility and preserved B cell epitopes. The truncated recombinant protein was engineered to expose epitopes on the surface through simulating amino acid sequence-based 3D folding in aqueous environment. The recombinant tFomA was further expressed and purified, and its immunological properties were evaluated. In the mice intranasal vaccination study, tFomA significantly induced antigen-specific IgG and sIgA responses in both systemic and oral-mucosal compartments, respectively. Our results testify that intelligent in silico designing of antigens provide amenable vaccine epitopes from hard-to-manufacture hydrophobic domain rich microbial antigens.
4,000원
5.
2017.06 구독 인증기관 무료, 개인회원 유료
BMP-2 is a well-known TGF-beta related growth factor, having a significant role in bone and cartilage formation. It has been employed to promote bone formation in some clinical trials, and to differentiate mesenchymal stem cells into osteoblasts. However, it is difficult to obtain this protein in its soluble and active form. hBMP-2 is expressed as an inclusion body in the bacterial system. To continuously supply hBMP-2 for research, we optimized the refolding of recombinant hBMP-2 expressed in E. coli, and established an efficient method by using detergent and alkali. Using a heparin column, the recombinant hBMP-2 was purified with the correct refolding. Although combinatorial refolding remarkably enhanced the solubility of the inclusion body, a higher yield of active dimer form of hBMP-2 was obtained from one-step refolding with detergent. The refolded recombinant hBMP-2 induced alkaline phosphatase activity in mouse myoblasts, at ED50 of 300-480ng/ml. Furthermore, the expressions of osteogenic markers were upregulated in hPDLSCs and hDPSCs. Therefore, using the process described in this study, the refolded hBMP-2 might be cost-effectively useful for various differentiation experiments in a laboratory.
4,000원
6.
2017.06 구독 인증기관 무료, 개인회원 유료
Abnormal HLA-G expression occurs in various diseases such as melanoma, renal cell carcinoma, asthma, and classic Hodgkin’s lymphoma. The purpose of this study was to determine whether HLA-G gene is linked with oral squamous cell carcinoma (OSCC). To investigate the possible link with susceptibility to OSCC, 54 OSCC patients and 120 healthy controls were enrolled in this study. HLA-G 14bp insertion/deletion polymorphism is in 3'-untranslated region of HLA-G gene. HLA-G 14bp insertion/deletion polymorphism was analyzed using the polymerase chain reaction (PCR) method. For the analysis of genetic data, SPSS18.0 program was used. Logistic regression models were performed for odds ratio (OR), 95 percent confidence interval (CI), and p value. There was a significant difference in distribution allele between OSCC patients and control subjects (OR=0.018, 95% CI=0.002- 0.131, p<0.001). Our results suggest that HLA-G 14bp insertion/deletion polymorphism may be linked with susceptibility to OSCC in the Korean population.
4,000원