검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        3.
        2023.11 구독 인증기관·개인회원 무료
        The development of separation method of radioactive tritium is imperative for treating tritiumcontaminated water originating from nuclear facilities. Polymer electrolyte membrane electrolysis technology represents a promising alternative to conventional alkaline electrolysis for tritium enrichment. Nevertheless, there has been limited research conducted thus far on the composition of membrane electrode assemblies (MEAs) specifically optimized for tritium separation, as well as the methods used for their fabrication. In this study, we conducted an investigation aimed at optimizing MEAs specifically tailored for tritium separation. Our approach involved the systematic variation of MEA components, including the anode, cathode, porous transport layer, and electrode formation method. The water electrolysis efficiency and the H/D separation factor in deuterated water (1%) were evaluated with respect to both the preparation method and the composition of the MEA. To assess the long-term stability of the MEAs, changes in cell voltage, resistance, and the active electrode area were analyzed using impedance analysis and cyclic voltammetry. Furthermore, we examined H/D separation factor both before and after degradation. The results showed that MEAs with different anode/cathode configurations and electrode formation methods improved the electrolysis efficiency compared to commercial MEAs. In addition, the degree of change in the resistance value was also different depending on the electrode formation method, indicating that the electrode formation method has a significant impact on the stability of the electrolysis system. Therefore, the study showed that the efficiency and long-term stability of the water electrolzer can be improved by optimizing the MEA fabrication method.
        4.
        2023.11 구독 인증기관·개인회원 무료
        Hydrogen isotope separation involves the separation of hydrogen, deuterium, tritium, and their isotopologues. It is an essential technology for removing radioactive tritium contamination and for obtaining valuable hydrogen isotope resources. Among various hydrogen isotope separation technologies, water electrolysis technology exhibits a high separation factor. Consequently, the electrolysis of tritiated water is of paramount importance as a tritium enrichment method for treating tritium-contaminated water and for analyzing tritium in environmental samples. More recently, hydroelectrolysis technology, which utilizes proton exchange membranes (PEM) to reduce water inventory, has gained favor over traditional alkaline hydroelectrolysis. Nevertheless, it is crucial to decrease the hydrogen permeability of the PEM in order to mitigate the explosion risk associated with tritium hydrogen electrolysis devices. Additionally, efforts are needed to enhance the hydrogen isotope selectivity of the PEM and optimize the manufacturing process of the membrane-electrode assembly (MEA), thereby improving both hydrogen isotope separation performance and water electrolysis efficiency. In this presentation, we will delve into two key aspects. Firstly, we’ll explore the reduction of hydrogen permeability and the enhancement of the hydrogen isotope separation factor in PEM through the incorporation of 2D nanomaterial additives. Secondly, we’ll examine the influence of various MEAs preparation methods on electrolysis and isotope separation performances. Lastly, we will discuss the effectiveness of the developed system in separating deuterium and tritium.
        5.
        2023.05 구독 인증기관·개인회원 무료
        The separation of hydrogen isotopes is a critical issue in various fields, such as deuterium or tritium production and the treatment of radioactively contaminated water. In this presentation, we describe the pervaporative separation of hydrogen isotopes using proton conductive membranes and underlying separation mechanism. We investigated the H/D separation factors of perfluorosulfonic acid (Nafion) and polybenzimidazole membranes using pervaporation, and found that both membranes exhibited similar separation factors of approximately 1.026. Water permeation flux through the membranes was highly dependent on their thickness and type, and increased with operation temperature. However, the effect of temperature on H/D separation factor was negligible. We also demonstrated the cascade separation of H/D, indicating the potential application of multi-stage operation. We found that surface transport mechanisms such as hydron hopping contributed the most to H/D separation during the pervaporation process of proton conductive membranes.
        6.
        2023.05 구독 인증기관·개인회원 무료
        For decontamination and quantification of trace amount of tritium in water, an efficient separation technology capable of enriching tritium in water is required. Electrolysis is a key technology for tritium enichment as it has a high H/T and D/T separation factors. To separate tritium, it is important to develop a proton exchange membrane (PEM) electrolyzer having high hydrogen isotope separation factor as well as high electrolyzer cell efficiency. However, there has not been sufficient research on the separation factor and cell efficiency according to the composition and manufacturing method of the membrane electrode assembly (MEA) Therefore, it is necessary to study the optimal composition and manufacturing method of the MEA in PEM electrolyzer. In this study, the H/D separation factor and water electrolysis cell efficiency of PEM electrolyzer were analyzed by changing the anode and cathode materials and electrode deposition method of the MEA. After the water electrolysis experiment using deionized water, the D/H ratio in water and hydrogen gas was measured using a cavity ring down spectrometer and a mass spectrometer, respectively, and the separation factor was calculated. To calculate the cell efficiency of water electrolysis, a polarization curves were obtained by measuring the voltage changes while increasing the current density. As a result of the study, the water electrolyzer cell efficiency of the MEA fabricated with different anode/cathode configurations and electrode formation methods was higher than that of commercial MEA. On the other hand, the difference in H/D separation factor was not significant depending on the MEA fabrication methods. Therefore, using a cell with high cell efficiency when the separation factor is the same will help construct a more efficient water electrolysis system by lowering the voltage required for water electrolysis.