Edaravone (Eda) is a potent scavenger of inhibiting free radicals including hydroxyl radicals (H2O2). Reactive oxygen species (ROS) such as H2O2 can alter most kinds of cellular molecules such as lipids, proteins and nucleic acids, cellular apoptosis. In addition, oxidative stress from over-production of ROS is involved in the defective embryo development of porcine. Previous study reported that Eda has protective effects against oxidative stress-like cellular damage. However, the effect of Eda on the preimplantation porcine embryos development under oxidative stress is unclear. Therefore, in this study, the effects of Eda on blastocyst development, expression levels of ROS, and apoptotic index were first investigated in preimplantation porcine embryos. After in vitro fertilization, porcine embryos were cultured for 6 days in PZM medium with Eda (10 μM), H2O2 (200 μM), and Eda+H2O2 treated group, respectively. Rate of blastocyst development was significantly increased (P<0.05) in the Eda treated group compared with only H2O2 treated group. And, we measured intracellular levels of ROS by DCF-DA staining methods and investigated numbers of apoptotic nuclei by TUNEL assay analysis is in porcine blastocyst, respectively. Both intracellular ROS levels and the numbers of apoptotic nucleic were significantly decreased (P<0.05) in porcine blastocysts cultured with Eda (10 μM). More over, the total cell number of blastocysts were significantly increased (P<0.05) in the Eda-treated group compared with untreated group and the only H2O2 treated group. Based on the results, Eda was related to regulate as antioxidant-like function according to the reducing ROS levels during preimplantation periods. Also, Eda is beneficial for developmental competence and preimplantation quality of porcine embryos. Therefore, we concluded that Eda has protective effect to ROS derived apoptotic stress in preimplantation porcine embryos.
Catalpol, an iridoid glucoside, isolated from the root of Rehmannia glutinosa Libosch. It possesses a broad range of biological and pharmacological activity including anti-tumor, anti-inflammation and anti-oxidant by acting as a free radical scavenger. Therefore, in this study, the effects of catalpol on blastocyst development, expression levels of reactive oxygen species (ROS) and apoptotic index were investigated in porcine embryos. After in vitro maturation and fertilization, porcine embryos were cultured for 6 days in porcine zygote medium 3 (PZM-3) supplemented with catalpol (0, 100, 200 and 400 μM, respectively). Blastocyst development not significantly improved in the catalpol treated group when compared with control group. Otherwise, the intracelluar levels of ROS were decreased and the numbers of apoptotic nuclei were reduced in the catalpol (100 μM) treated porcine blastocysts (P<0.05). On the other hand, blastocyst development was significantly improved in the catalpol (100 μM) treated group when compared with the untreated catalpol group under H2O2 (200 μM) induced oxidative stress (P<0.05). Otherwise, the intracellular levels of ROS in catalpol (100 μM) treated group were significantly decreased in the untreated catalpol group under H2O2 (200 μM) induced oxidative stress (P<0.05). Furthermore, the total cell numbers of blastocysts were significantly increased (P<0.05) in the catalpol (100 μM) treated group under H2O2 (200 μM) induced oxidative stress, whereas numbers of apoptoic nuclei were significantly reduced (P<0.05). In conclusion, our results indicate that treatment of catalpol may have important implications for improving developmental competence and preimplantation quality of porcine embryos through its anti-oxidant and anti-apoptotic effect
Cows may suffer impaired ovarian function, often accompanied by reduced conception rates and increased embryonic loss. Cystic ovarian disease (COD) is one of the most frequently diagnosed gynecological findings in dairy cattle. It causes temporary infertility and is likely to affect reproduction as well as production parameters in cattle. Therefore, the purpose of this study was to determine the expression patterns of apoptosis (Bcl-2, Bax), implantation (E-cadherin) and immune related proteins (TNF-α, IL-10) in uterine endometrium of Hanwoo (Korean native cattle) with ovarian cyst and normal ovarian follicles. In the Western blot analysis, the expression of anti-apoptotic Bcl-2 protein was significantly higher in endometrium with normal ovarian follicles, whereas expression of pro-apoptotic Bax protein was significantly lower. Also, the expressions of E-cadherin and TNF-α proteins were significantly higher in uterine endometrium with normal ovarian follicles. On the other hand, the expression of IL-10 protein was significantly lower in uterine endometrium with normal ovarian follicles. Taken together, our results provided that the expressions of apoptosis, adhesion and immune related proteins in uterine endometrium with ovarian cyst were showed the aberrant patterns, and we suggest that different expression changes of these proteins may be affect to pregnancy ability of cattle.
Humulus japonicus is an ornamental plant in the Cannabaceae family. Although the mode of action of Humulus japonicus is not fully understood, a strong relationship was observed between anti-inflammatory and anticancer in some types of cells. Recent studies also have shown that Humulus japonicus possesses anti-inflammatory activities and may significantly improve antioxidant potential in Raw 264.7 macrophage cells. Thus, the aim of this study was eva-luated the effect of Humulus japonicus extract on sperm motility and subsequent preimplantation developmental com-petence of the bovine embryos. After in vitro maturation, the oocytes with sperms were exposed in in vitro fertilization (IVF) medium supplemented with Humulus japonicus extract (0.01, 0.05, 0.1 μg/mL, respectively) for 1 day. In our results, exposure of IVF medium to Humulus japonicus extract did not affect sperm motility and percentage of pene-trated oocytes but ROS intensity was significantly decreased by 0.01 μg/mL compared with other groups (p< 0.05). Moreover, treatment with 0.01 μg/mL of Humulus japonicus extract was higher the frequency of blastocyst formation than the any other groups (p<0.05). Otherwise, treatment with 0.01 μg/mL of Humulus japonicus extract not increased the total cell number but reduced apoptotic-positive nuclei number. In conclusion, our results indicate that supple-mentation of Humulus japonicus extract in IVF medium may have important implications for improving early embryo-nic development in bovine embryos