검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        3.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해상교통정보의 수집, 관리 및 공유를 개선하기 위해서는 해상교통정보 관련 기술 동향 파악 및 해상교통정보의 현황·문제점 분석이 우선되어야 한다. 따라서 본 연구에서는 먼저 해상교통정보의 국내외 기술 동향을 조사하였으며 국내 해상교통정보의 수집·관리· 공유에 대한 현황·문제점을 분석하여 정리하였다. 자료를 토대로 문제점을 분석한 결과 우선 수집단계의 문제점은 주로 LTE 통신권을 벗 어나는 원거리 RADAR·CCTV·카메라 영상정보 수집의 어려움으로 나타났으며 이로 인해 EEZ를 거쳐 영해로 진입하는 밀입국 선박 등의 조기 탐지가 어려운 것으로 나타났다. 그리고 관리단계의 문제점은 대부분 해상교통시스템이 자체 구축한 물리 저장 공간을 사용함으로 써 저장 공간의 유연성 부족으로 인해 편리한 축소·확대가 어렵고 시스템 장애 발생 시 대비책으로 시스템 이중화·백업 등이 힘든 상황이 다. 또한 공유단계의 문제점은 대부분 해상교통정보 공유시 주로 내부망을 사용하고 있는 현황상 운영기관 외부로의 정보 공유가 어려운 것으로 나타났으며 LRIT·SASS와 같이 정부 클라우드를 통해 정보 공유가 되고 있다고 하여도 정부 클라우드의 특성상 해양 빅데이터 등 을 효과적으로 활용할 수 있는 다양한 애플리케이션의 제공이 원활히 되고 있지 않은 상황이다. 이러한 문제점들을 개선하기 위해 우선 수집단계의 경우 무인기·위성 등 수집장비의 추가 구축을 제시함으로써 수집구역을 확장하였고 관리·공유단계는 각 해상교통시스템의 운 영 주체·정보 공개성을 고려한 민간 클라우드 도입 및 구축형태를 제시함으로써 클라우드 도입 시 전문성·보안성 향상을 기대하였다.
        4,000원
        5.
        2002.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        차나무뿌리썩이선충(Pratylenchus loosi)이 국내에서 처음으로 전라남도 명암군과 제주도 남제주군의 차나무 뿌리와 주변 중에서 발견되었다. 차나무뿌리썩이선충의 두부주름은 2개이며 암컷의 길이는 433-646이고, a = 29.1-37.5, b = 5.1-6.4, c = 15.0-21.3, vulva (%) = 73.0-85.4였다. 수컷의 몸길이는 408-512 였으며 a = 36.1-40.0, b = 4.8-6.7, c = 17.0-19.0, spicule = 14.1-18.0였다. 구침의 길이는 11.6-18.0였으며, 측선의 갯수는 4개였다. 저정낭은 정자로 차 있으며, 모양은 둥근 고치모양 또는 직사각형 모양이다. 꼬리의 형태는 가늘고 끝이 둥글거나 뾰족하다.
        4,000원
        6.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to investigate the effect of no-tillage on sequential cropping supported from recycling of first crop ridge on the productivity of crop and physical properties of soil under green house condition. This study is a part of “No-tillage agriculture of Korea-type on recycled ridge”. From results for distribution of soil particle size with time process after tillage, soil particles were composed with granular structure in both tillage and no-tillage. No-tillage soil in distribution of above 2 mm soil particle increased at top soil and subsoil compared with tillage soil. Tillage and one year of no-tillage soil were not a significant difference at above 0.25 mm~below 0.5 mm, above 0.5 mm~below 1.0 mm, and above 1.0 mm of water-stable aggregate. Two years of no-tillage soil was significantly increased by 8.2%, 4.5%, and 1.7% at above 0.25 mm~below 0.5 mm, above 0.5 mm~below 1.0 mm, and above 1.0 mm of water-stable aggregate, respectively, compared with one year of no-tillage. Bulk density of top soil was 1.10 MG m3 at tillage and 1.30 MG m3 at one year of no-tillage. Bulk density of top soil was 1.14 MG m3 at two years and 1.03 MG m3 at three years of no-tillage, respectively. Bulk density of subsoil was a similar tendency. Solid phase ratio in top soil and subsoil was increased at one year of no-tillage compared with tillage soil, while soil phase ratio decreased at two and three years of no-tillage. Pore space ratio in tillage top soil (58.5%) was decreased by 8.5% at compared with no-tillage soil (51.0%). Pore space ratio was 56.9% and 61.2% at two and three years of no-tillage soil, respectively. Subsoil was a similar tendency. Gaseous phase ratio was decreased at one year of no-tillage soil, and increased at two and three years of no-tillage soil compared with tillage soil. Liquid phase ratio in top soil was increased at one year of no-tillage (28.3%), and decreased at two years (23.4%) and at three years (18.3 %) of no-tillage soil compared with tillage soil (24.2%). Subsoil was a similar tendency. Liquid phase ratio in subsoil was increased than top soil.