검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        In this study, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/graphene oxide (GO) nanocomposite films containing various content of GO were prepared using solution casting method. The effect of GO content on Young’s modulus and dispersion of GO in PHBV matrix was investigated. Also, the thermomechanical properties, oxygen transmission rates and hydrolytic degradation of PHBV/GO nanocomposite films were studied. The addition of GO into PHBV improves the Young’s modulus and decreases thermal expansion coefficient. The improvement can be mainly attributed to good dispersion of GO and interfacial interactions between PHBV and GO. Furthermore, PHBV/GO nanocomposite films show good oxygen barrier properties. PHBV/GO nanocomposites show lower hydrolytic degradation rates with increasing content of GO.
        2.
        2014.07 KCI 등재 서비스 종료(열람 제한)
        This study introduces physical property of biodegradable construction materials and their possible methods of performance evaluation. The used biodegradable polymer was Polycarporlactone and additionally Starch and pMDI was also mixed to accelerate biodegradation of composites as well as reduce the cost of composites. Tensile strength, modulus and elongation was measured as to Starch and pMDI mixing ratio to PCL. Test results showed that the addition of Starch resulted in the reduction of tensile strength, modulus and elongation due to the weakness of PCL-Starch interfaces. On the other hand, the addition of pMDI to composites improved physical property and the best effect was revealed when the composites were PCL/Starch (80/20) resulting reinforcement of PCL-Starch interfaces. The performance evaluation of possible biodegradable construction materials was summarized by systematical methods. The requirement conditions for complex-type vegegation unit was first arranged and then transferred to requirement performance. The test performance was classified based on KS ISO standards from non-biodegradable plastics test methods. Finally, environmental performance was proposed by evaluating life cycle assessment of biodegradable construction materials from production of raw materials to decomposition of composites-type vegetation unit.
        3.
        2013.10 KCI 등재 서비스 종료(열람 제한)
        In this study, thermoplastic starch (TPS), cross-linked starch (CS), and cross-linked starch modified with glycerol (CTPS) were prepared, and the mechanical properties of the compatibilized low-density polyethylene (LDPE) blends (LDPE/TPS, LDPE/CS, and LDPE/CTPS) were investigated and compared with those of uncompatibilized LDPE/TPS, LDPE/CS, and LDPE/CTPS blends. Maleic-anhydride-grafted polyethylene was used as the compatibilizer. The enhanced tensile strength and elongation at break for the compatibilized LDPE/modified starch blends are a result of the improved compatibility between LDPE and the modified starch, which was confirmed by torque measurements and scanning electron microscopy.
        4.
        2013.06 KCI 등재 서비스 종료(열람 제한)
        To investigate organoclay, high styrene resin masterbatch (HSR), high impact polystyrene (HIPS), and polystyrene (PS) as reinforcing materials for the improvement of the abrasion resistance of poly(styrene-block-butadiene-block- styrene) (SBS), SBS/organoclay nanocomposites, SBS/HSR, SBS/HIPS, and SBS/PS blends were prepared. The effect of organoclay and blends on the abrasion resistance and mechanical properties of SBS was investigated. Even though intercalations of organoclay are observed for SBS/Cloisite 20A nanocomposites and not for SBS/Cloisite 30B composites, the abrasion resistance of SBS/Cloisite 20A nanocomposites is worse than that of SBS/Cloisite 30B composites. When SBS was blended with HSR, HIPS and PS, the abrasion resistance of the blends increases with increasing of HSR, HIPS and PS content from 0 to 20 wt%.