검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was carried out to investigate the effects of seeding dates on the growth characteristics, dry matter yield and mineral contents of rye cultivated in the paddy field. The field experiment was conceived as a randomized block design performed in triplicate with seeding dates of October 19 (T1), October (T2), November 2 (T3), November 9 (T4), and November 16 (T5). All treatments was harvested on May 22 of the following year. Plant length, stem diameter, dry matter yield, and total digestible nutrient (TDN) yield were higher in rye with early seeding dates (p<0.05), whereas TDN was higher with late seeding dates (p<0.05). There was no significant difference between crude protein and ether extract among the different seeding dates. Neutral detergent fiber (NDF) and acid detergent fiber (ADF) were higher with early seeding dates (p<0.05). K and Ca contents were significantly higher at T1 as compared to other treatments (T2, T3, T4 and T5). There was no significant difference in Mg and Na content among T1, T2, T3, T4 and T5 treatments. P content was higher in the order T1 > T2 > T3 > T4 > T5 (p<0.05). There was no significant difference in free sugar contents (glucose, fructose and sucrose) by treatments, whereas total free sugar content was the highest in T1 than in the other treatments (p<0.05). Collectively, the results obtained in this study indicate that it is favorable to seed (T1 and T2) soon after harvesting rice to increase dry matter, TDN yield and total free sugar content of rye in the midlands of Korea.
        4,000원
        2.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was carried out to investigate the effects of seeding dates and cultivated period on the growth characteristics, dry matter yield and feed value of Teosinte new variety “Geukdong 6”〔Zea mays L. subsp. mexicana (Schrad.) H. H. Iltis〕for feed. The experimental design was arranged in a randomized block design with three replications. Treatments consisted of five time seeding dates, 10 May(T1), 25 May(T2), 10 June(T3), 25 June(T4) and 10 July(T5), and same time harvesting, 22 October. Therefore, growing period were 164 days(T1), 149 days(T2), 134 days(T3), 119 days(T4) and 103 days(T5), respectively. In growth stage at harvest time, T1, T2, T3, T4 and T5 were early flowering, end heading, middle heading, early heading and early heading stage, respectively. Plant length and dead leaf were highest in T1, but leaf width and number of leaf were highest in T2 than others (p<0.05). Leaf length, stem diameter and number of tiller were not significantly different among the treatments (p<0.05). Stem hardness was higher in order of T1(2.0)> T2(1.9) > T3=T4(1.7) > T5(1.2kg/cm2). Fresh yield and dry matter yield showed significantly higher as the sowing time was faster and the cultivation period was longer (T1 > T2 > T3 > T4 > T5, p<0.05). Crude protein, crude fat and TDN content were highest in T5, but ADF and NDF content were highest in T1 than others (p<0.05). T1, T2 and T3 showed significantly higher crude protein yield compared to T4 and T5 (p<0.05). Total digestible nutrients yield were higher in order of T1 > T2 > T3 > T4 > T5 (p<0.05), and relative feed value were higher in order of T5 > T4 > T3 > T2 > T1 (p<0.05). Based on the above results, seeding dates could be recommended from the early May to the late May, and it is efficient that the cultivation period is over 150 days for dry matter yield, crude protein yield and total digestible nutrients yield.
        4,000원