For the commercialization of bipolar plates, several properties must be considered together. Electrical conductivity, corrosion resistance, contact resistance, mechanical strength, and light weight are essential evaluation factors, with corrosion resistance and durability being significant for unitized regenerative fuel cells (URFCs), which must operate in electrolysis and fuel cell mode. However, improving both properties is challenging, since corrosion resistance is largely inversely proportional to conductivity. In this study, to improve both properties together, composites composed of Pb and Zn with excellent conductivity and corrosion resistance were prepared with graphite powder and formed as a coating layer on the surface of 304 stainless steel (SS304) and evaluated for electrical conductivity and corrosion resistance. Among the ZnPb/C composites prepared at various ratios, Zn8Pb2/C exhibited the lowest transmittance resistance of 1.566 Ω, and improved electrical conductivity and durability compared to bare SS304.